期刊文献+

界标窗口下数据流最大规范模式挖掘算法研究 被引量:4

The Maximal Regular Patterns Mining Algorithm Based on Landmark Window over Data Stream
下载PDF
导出
摘要 首次对界标窗口下数据流最大规范模式挖掘问题进行了研究.为了克服na6ve算法在处理该问题时不具有增量计算的缺点,提出了一种基于边界界标窗口技术的数据流最大规范模式挖掘(data stream maximal regular patterns mining based on boundary landmark window,DSMRM-BLW)算法.该算法将数据流上的第1个待处理窗口定义为边界界标窗口,使用na6ve算法对其进行处理;之后每个窗口上的最大规范模式都可以基于前一个窗口上的最大规范模式集合增量获得,可以克服na6ve算法的缺点.实验结果表明:DSMRM-BLW算法是处理界标窗口下数据流最大规范模式挖掘的有效方法,与na6ve算法相比,具有相同的执行结果,但时间与空间效率得到了很大的提高. Mining regular pattern is an emerging area.To the best of our knowledge,no method has been proposed to mine the maximal regular patterns about data stream.In this paper,the problem of mining maximal regular patterns based on the landmark window over data stream is focused at the first time.In order to resolve the issue that the na6 ve algorithm which is used to handle the maximal regular patterns mining based on the landmark window over data stream does not have the characteristic of incremental computation,the DSMRM-BLW(data stream maximal regular patterns mining based on boundary landmark window)algorithm is proposed.It takes the first window as the boundary landmark window,and handles it with the na6 ve algorithm.For all other windows,it can obtain the maximal regular patterns over them based on the ones over the adjacent last window incrementally,and can overcome the drawback of the na6 ve algorithm.It is revealed by the extensive experiments that the DSMRM-BLW algorithm is effective in dealing with the maximal regular patterns mining based on the landmark window over data stream,and outperforms the na6 ve algorithm in execution time and space consumption.
出处 《计算机研究与发展》 EI CSCD 北大核心 2017年第1期94-110,共17页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60903159,61173153,61402096,61163011,61262082,61662054) 中央高校基本科研业务费专项资金项目(N110818001,N100218001,N130504007,N120104001) 国家“八六三”高技术研究发展计划基金项目(2015AA016005) 沈阳市科技计划项目(1091176-1-00) 内蒙古自然科学基金项目(2015MS0612)~~
关键词 数据流 界标窗口 最大规范模式 增量计算 边界界标窗口技术 data stream landmark window maximal regular pattern incremental calculation boundary landmark window technology
  • 相关文献

参考文献2

二级参考文献42

  • 1Gaber MM, Zaslavsky A, Krishnaswamy S. Mining data streams: A review. ACM SIGMOD Record, 2005,34(2): 18-26.
  • 2Jiang N, Gruenwald L. Research issues in data stream association rule mining. ACM SIGMOD Record, 2006,35(1):14-19.
  • 3Garofalakis MN, Gehrke J. Querying and mining data streams: You only get one look a tutorial. In: Franklin MJ, Moon B, Ailamaki A, eds. Proc. of the 2002 ACM SIGMOD Int'l Conf. on Management of Data. Madison: ACM Press, 2002. 635-635.
  • 4Giannella C, Han J, Pei J, Yan X, Yu PS. Mining frequent patterns in data streams at multiple time granularities. In: Data Mining: Next Generation Challenges and Future Directions. 2004. 191-212.
  • 5Chang JH, Lee WS. Finding recent frequent itemsets adaptively over online data streams. In: Lise G, Ted ES, Pedro D, Christos F, eds. Proc. of the 9th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Washington: ACM Press, 2003. 487-492.
  • 6Jiang N, Gruenwald L. CFI-Stream: Mining closed frequent itemsets in data streams. In: Roberto B, Kristin PB, Gautam D, Dimitrios G, Johannes G, eds. Proc. of the 12th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Philadelphia: ACM Press, 2006. 592-597.
  • 7Yu JX, Chong Z, Lu H, Zhang Z, Zhou A. A false negative approach to mining frequent itemsets from high speed transactional data streams, Information Sciences, 2006,176(4):1986-2015.
  • 8Leung CKS, Khan QI. DStree: A tree structure for the mining of frequent sets from data streams. In: Clifton CW, Zhong N, Liu JM, Wah BW, Wu XD, eds. Proc. of the 6th Int'l Conf. on Data Mining. Hong Kong: IEEE Press, 2006. 928-932.
  • 9Wong RCW, Fu AWC. Mining top-k frequent itemsets from data streams. Data Mining and Knowledge Discovery, 2006,13(2): 193-217.
  • 10Papadimitriou A, Yu PS. Optimal multi-scale patterns in time series streams. In: Roberto B, Kristin PB, Gautam D, Dimitrios G, Johannes G, eds. Proc. of the 2006 ACM SIGMOD Int'l Conf. of Management of Data. Chicago: ACM Press, 2006. 647-658.

共引文献52

同被引文献37

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部