期刊文献+

基于最小生成树的多视图特征点快速匹配算法 被引量:5

Fast matching algorithm of multi-view feature points based on minimal spanning tree
原文传递
导出
摘要 针对图像特征点匹配中计算效率较低且误配率较高的问题,提出了一种在两视图匹配中引入最小生成树的新算法.该方法主要运用最小生成树构建匹配代价最小的图像对,首先通过对输入的多幅图像进行特征点提取,对生成的特征点采用基于欧式距离的两视图匹配,进一步构建最小生成树以生成最短特征点匹配轨迹,从而完成匹配.测试结果表明:最小生成树的引入使得大多数特征点匹配过程只在相关图像中运行,且能找出匹配代价最低的匹配路径,在保证匹配准确性的情况下,计算时间开销约为传统算法的20%,保证了图像匹配的实时性. To solve the problem of low computation efficiency as well as the high rate of error matching in image feature points matching,an algorithm was proposed.The minimal spanning tree was mainly used to build image pairs with least matching costs based on two views.Firstly,the feature point was extracted from many images,and two views matching was used based on Euclidean distance.Then the minimal spanning tree was built to generate the shortest path of feature point matching to complete the matching.Experimental results show that the introduction of the minimal spanning tree makes most of the feature points matching process only run in the relevant images and matching of the lowest cost path can be found.On the premise of guarantee the matching accuracy,computation time costs of this algorithm is only about 20% of the traditional algorithm,which ensures the real-time image matching.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第1期41-45,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61502185)
关键词 特征点匹配 最小生成树 多视图 欧式距离 匹配代价 feature points matching minimal spanning tree multi-view Euclidean distance matching costs
  • 相关文献

参考文献4

二级参考文献40

  • 1冷雪飞,刘建业,熊智.基于分支特征点的导航用实时图像匹配算法[J].自动化学报,2007,33(7):678-682. 被引量:33
  • 2骞森,朱剑英.基于改进的SIFT特征的图像双向匹配算法[J].机械科学与技术,2007,26(9):1179-1182. 被引量:44
  • 3SINA A N, FRAHM J M,POLLEFEYS M,et al. Fe-at- ure tracking and matching in video using progr-ammable graphics hardware [ J ]. Machine Vision and Applica- tion, 2011,22( 1 ) :207-217.
  • 4BAY H, ESS A, TUYTELAAR T, et al. Speeded-up robust features(SURF) [ J]. Computer Vision and Im- age Understanding ( S1077-3142 ), 2008, 110 ( 3 ) : 346- 359.
  • 5RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB : an efficient alternative to SIFT or SURF [ J ]. Proceed- ings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 2011:2564-2571.
  • 6Moravec H. Rover visual obstacle avoidance. Proc. of the 7th International Joint Conference on Artificial Intelligence. Vancouver, Canada. 1981. 785-790.
  • 7Harris C J, Stephens M. A combined corner and edge detector. Proc. of the 4th Alvey Vision conference. 1988. 147-151.
  • 8Lowe DG. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 9Rublee E, Rabaud V, Konolige K, Bradski G. ORB: An efficient alternative to SIFT or SURF. Proc. of the IEEE International Conference on Computer Vision. Barcelona, Spain. 2011. 2564-2571.
  • 10Bay H, Tuyteplaars T, van Gool L. SURF: Speeded up robust features. Proc. of the European Conference on Computer Version(ECCV 2006). 2006. 404-417.

共引文献87

同被引文献42

引证文献5

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部