期刊文献+

高能效认知自适应两阶段协作频谱感知算法 被引量:3

Energy-efficient cognitive adaptive two-phase sensing for cooperative spectrum sensing algorithm
原文传递
导出
摘要 针对协作频谱感知技术存在产生多余的传输开销和次用户能量消耗的不足,提出了结合双阈值能量检测模型和两步检测模型的自适应协作频谱感知(CATS)算法,在保证检测性能的前提下降低能量消耗.首先给出了CATS的数学模型,然后对CATS的检测概率和能量消耗进行了理论分析.CATS在第一阶段的检测结果不准确的情况下,才执行第二阶段的感知,并根据第一阶段的检测结果以及网络状况自适应调整两个阶段参与协作的次用户数目.仿真结果表明:与现有的两步检测协作模型相比,CATS算法在保证系统检测精度的同时能够有效减少系统的能量消耗. Cooperative spectrum sensing(CSS)will lead to transmission overhead and additional energy consumption of secondary users,and in order to alleviate energy consumption and make full use of the advantages of CSS,an energy-efficient cognitive adaptive two-phase sensing algorithm(CATS)was proposed.The algorithm was a combination of dual threshold energy detection model and two step detection model,and decreased energy consumption under the constraint of detection performance.The mathematical model of CSS based on CATS was presented,and theoretical analysis of the detection probability and energy consumption was given.The proposed CATS would perform the second-phase sensing only when the detection result of the first phase in CATS was inaccurate.According to the detection results of the first-phase and the network status,the proposed CATS would adaptive configure the number of SU participating in cooperation in each stage to achieve the goal of reducing energy consumption and ensuring detection probability.Simulation results show that compared with the traditional two-step CSS,the proposed CATS can reduce energy consumption while ensuring the detection probability.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第1期63-68,81,共7页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61103019 61272497) 国家民委中青年英才培养计划项目
关键词 认知无线电网络 协作频谱感知 能量消耗 两阶段检测 检测性能 cognitive radio networks cooperative spectrum sensing(CSS) energy consumption two-phase detection detection performance
  • 相关文献

参考文献2

二级参考文献22

  • 1Haykin S.Cognitive radio:brain-empowered wireless communications[J].IEEE Journal on Selected Areas in Communications,2005,23(2):201-220.
  • 2Ghasemi A and Sousa E.Collaborative spectrum sensing for opportunistic access in fading environments[C].2005 IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks(DySPAN 2005),Baltimore,USA,2005:131-136.
  • 3Duan Dong-liang and Yang Liu-qing.Cooperative spectrum sensing with ternary local decisions[J].IEEE Communications Letters,2012,16(9):1512-1515.
  • 4Akyildiz I F,Lo B F,and Balakrishnan R.Cooperative spectrum sensing in cognitive radio networks:a survey[J].Physical Communication,2011,4(1):40-62.
  • 5Lee W Y and Akyildiz I F.Optimal spectrum sensing framework for cognitive radio networks[J].IEEE Transactions on Wireless Communications,2008,7(10):3845-3857.
  • 6Liaug Y C,Zeng Y H,Peh E C Y,et al.Sensing-throughput tradeoff for cognitive radio networks[J].IEEE Transactions on Wireless Communications,2008,7(4):1326-1337.
  • 7Peh E C Y,Liang Y C,Guan & L,et al.Optimization of cooperative sensing in cognitive radio networks:sensing-throughput tradeoff view[J].IEEE Transactions on Vehicular Technology,2009,58(9):5294-5299.
  • 8Maleki S,Chepuri S P,and Leus G.Energy and throughput efficient strategies for cooperative spectrum sensing in cognitive radios[C].IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications(SPAWC),San Francisco,USA,2011:71-75.
  • 9Noel A and Schober R.Convex sensing-reporting optimization for cooperative spectrum sensing[J].IEEE Transactions on Wireless Communications,2012,11(5):1900-1910.
  • 10Althunibat S,Palacios R,and Granelli F.Performance optimisation of soft and hard spectrum sensing schemes in cognitive radio[J].IEEE Communications Letters,2012,16(7):998-1001.

共引文献9

同被引文献20

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部