期刊文献+

隐式标度因子的总体最小二乘估计方法 被引量:2

Scaled Total Least Squares Method with Implicit Scaled Factor
下载PDF
导出
摘要 分析指出了标度总体最小二乘方法(STLS)存在的问题,提出了一种隐式标度因子的标度总体最小二乘方法(Im STLS)。区别于现有STLS方法在平差准则中引入标度因子,Im STLS方法在EIV函数模型中顾及标度因子,从而解决了现有STLS平差准则形式与标度因子实际表征的平差结果不一致的问题。此外,利用所建函数模型的重构表达式推导的Im STLS估计量及其方差-协方差阵,与经典最小二乘平差理论具有形式同构性。最后,验证了所提方法统一表达LS,DLS和TLS的正确性,并讨论给出了标度因子对平差结果的影响及确定方法。 The defect of the existing scaled total least squares (STLS) method is investigated in detail, and then a scaled total least squares method with implicit scaled factor (short for ImSTLS) is proposed. To solve the problem that adjustment criterion form with scaled factor employed by the existing STLS method is inconsistent with actual adjustment result at specific scaled factor, the ImSTLS method establishes the new EIV function model using implicit scaled factor which is a creative way to achieve that problem. Moreover, ImSTLS estimation and its variance -covariance matrix derived from a reconstruction form of the function model can be completely formulated by standard least squares theory. Finally, experiment results show the validity of the proposed method for generalizing LS, DLS and TLS is verified, and both determination method and influence of the implicit scaled factor on the adjustment result are discussed in detail.
作者 刘志平 李思达 张秋昭 LIU Zhiping LI Sida ZHANG Qiuzhao(School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)
出处 《测绘科学技术学报》 CSCD 北大核心 2016年第5期441-446,共6页 Journal of Geomatics Science and Technology
基金 国家自然科学基金项目(41204011 41504032) 江苏高校优势学科建设工程项目(SZBF2011-6-B35)
关键词 最小二乘法 EIV模型 隐式标度因子 标度总体最小二乘 平差准则 least squares method errors-in-variables model implicit scaled factor scaled total least squares method adjustment criteria
  • 相关文献

参考文献3

二级参考文献18

  • 1Rao B D. Unified Treatment of LS, TLS and Truncated SVD Methods Using a Weighted TLS Framework[C]. Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modelling, Philadelphia P A, 1997.
  • 2Paige C C, Strakos Z. Scaled Total Least Squares Fundamentals[J]. Numerisehe Mathematik, 2002, 91:117-146.
  • 3Qiao Sanzheng, Xu Wei, Wei Yimin. An Algorithm for Solving Scaled Total Least Squares Problems lOLl. http://www. cas. mcmaster. ca/-qiao/pub- lications/QXW08, pdf, 2009.
  • 4Paige C C, Strakos Z. Bounds for the Least Squares Distance Using Scaled Total Least Squares[J]. Numerische Mathematik, 2002,91:93-115.
  • 5Xu Wei, Qiao Sanzheng, Wei Yimin. A Note on the Scaled Total Least Squares Problem[J]. Linear Algebra and Its Applications, 2008,428:469-478.
  • 6Rao B D. Unified treatment of LS, TLS and truncated SVD methods using a weighted TES framework [ C ]// Proceedings of the second international workshop on recent advances in total least squares techniques and errors-in-variables modeling, Philadelphia PA: SIAM Publications, 1997.
  • 7Paige C C, Strakoa Z. Scaled total least squares funda- mentals [ J ]. Numer Math,2002,91 ( 1 ) : 117 - 146.
  • 8Paige C C. Unifying least squares, total least squares and data least squares[ C ]//Total least squares and errors-invariables modeling. Netherlands : Kluwer Academic Publishers, 2002.
  • 9Paige C C, Strakoa Z. Bounds for the least squares distance using scaled total least squares [ J ]. Numer Math,2002, 91 ( 1 ) :93 - 115.
  • 10Schaffrin B. A note on constrained total least - squares estimation[J]. Linear Algebra Appl, 2006,417( 1 ) : 245 - 258.

共引文献27

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部