期刊文献+

基于序列连通度的睡眠分期算法研究 被引量:2

Sleep Staging from the Visibility Graph Algorithm of Series
下载PDF
导出
摘要 准确的睡眠分期有利于帮助人们改善睡眠质量.本文提出了一种基于序列连通度分析的特征参数提取算法,提取了连通度分布斜率,连通距离均值,平均连通距离均值以及改进的加权连通度均值等特征参数,采用最小二乘支持向量机对其进行训练和学习,建立了睡眠脑电的数学模型.结果表明,相对于目前已有的序列加权连通度算法,本文算法对于不同睡眠状态的分期正确率提高了约5.72%,特别是对于浅睡眠状态的分类正确率提高约9.65%. Monitoring the sleep quality accurately can play an effective supporting role in helping people improve the quality of sleep. In the present study,a novel feature extraction algorithm is proposed based on the natural visibility graph and horizontal visibility graph methods. The slope of visibility degree distribution,the mean of visibility distance,the mean of averaged visibility distance and the mean of improved weighted visibility graph were extracted,and trained by the least square-support vector machines( LS-SVM) classifier. The mathematical model between electroencephalogram( EEG) and sleep state was established and verified by different samples. The results demonstrated that the classification accuracy of different states improved about 5. 72% compared to the existing weighted visibility graph,the classification accuracy of shallowsleep states improved about 9. 65%.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第1期225-231,共7页 Acta Electronica Sinica
基金 哈尔滨工业大学理工医交叉学科基础研究培育计划(No.HIT.IBRSEM.2013005) 哈尔滨市科技创新人才研究专项资金(No.2015RAXXJ038)
关键词 脑电信号 序列连通度 最小二乘支持向量机 EEG(Electroencephalogram) visibility graph LS-SVM(Least square-support vector machines)
  • 相关文献

参考文献5

二级参考文献37

  • 1王巧兰,季忠,秦树人.基于小波变换的脑电噪声消除方法[J].重庆大学学报(自然科学版),2005,28(7):15-17. 被引量:20
  • 2钟涛,郭曲练,潘韫丹.麻醉深度指数与脑电双频谱指数测定靶控输注异丙酚患者镇静时镇静深度的比较[J].中华麻醉学杂志,2005,25(12):894-897. 被引量:40
  • 3宁艳,江朝晖,安滨,冯焕清.睡眠生理参数的去趋势波动分析[J].生物医学工程学杂志,2007,24(2):249-252. 被引量:9
  • 4俞梦孙 杨军 等.用微动敏感床垫检测睡眠的研究[J].中华航空航天医学杂志,1999,10(1):40-45.
  • 5Culebras A. Clinical Handbook of Sleep Disorders [M]. Boston, USA: Butterworth-Heinemann, 1996.
  • 6Takahashi S, Sakai T, Matsuki A. Relationship between bispeetral index and sleep stages in man [J].Anesth Analg, 1999: 88(2S): S57.
  • 7Sleigh J W, Andrzeiowski J, Steyn-Ross A, et al. The bispeetral index: A measure of depth of sleep [J]. Anesth Analg, 1999, 88(3):659-661.
  • 8Anderson R E, Jakobsson J G. Cerebral state monitor, a new small handheid EEG monitor for determining depth of anaesthesia clinical comparison with the bispectral index during day-surgery [J]. Eur J Anaesthesiol, 2006, 23: 208- 212.
  • 9Nieuwenhuijs D, Coleman E L, Douglas N J, et al. Bispectral index values and spectral edge frequency at different stages of physiologic sleep[J]. Anesth Analog, 2002, 94: 125-129.
  • 10Rechtschaffen A, Kales A. A manual of standardized terminology techniques and scoring system for sleep stages of human subjects[M] Washington D C: Government Printing Office, Public Health Service 1968:3-7.

共引文献14

同被引文献6

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部