期刊文献+

Responses of the East Asian Jet Stream to the North Pacific Subtropical Front in Spring 被引量:2

Responses of the East Asian Jet Stream to the North Pacific Subtropical Front in Spring
下载PDF
导出
摘要 This study concerns atmospheric responses to the North Pacific subtropical front (NPSTF) in boreal spring over the period 1982-2014. Statistical results show that a strong NPSTF in spring can significantly enhance the East Asian jet stream (EAJS). Both transient eddy activity and the atmospheric heat source play important roles in this process. The enhanced atmospheric temperature gradient due to a strong NPSTF increases atmospheric baroclinicity, resulting in an intensification of transient eddy and convection activities. On the one hand, the enhanced transient eddy activities can excite an anomalous cyclonic circulation with a quasi-baraotropical structure in the troposphere to the north of the NPSTF. Accordingly, the related westerly wind anomalies around 30°N can intensify the component of the EAJS over the Northeast Pacific. On the other hand, an enhanced atmospheric heat source over the NPSTF, which is related to increased rainfall, acts to excite an anomalous cyclonic circulation system in the troposphere to the northwest of the NPSTF, which can explain the enhanced component of the EAJS over the Northwest Pacific. The two mechanisms may combine to enhance the EAJS. This study concerns atmospheric responses to the North Pacific subtropical front (NPSTF) in boreal spring over the period 1982-2014. Statistical results show that a strong NPSTF in spring can significantly enhance the East Asian jet stream (EAJS). Both transient eddy activity and the atmospheric heat source play important roles in this process. The enhanced atmospheric temperature gradient due to a strong NPSTF increases atmospheric baroclinicity, resulting in an intensification of transient eddy and convection activities. On the one hand, the enhanced transient eddy activities can excite an anomalous cyclonic circulation with a quasi-baraotropical structure in the troposphere to the north of the NPSTF. Accordingly, the related westerly wind anomalies around 30°N can intensify the component of the EAJS over the Northeast Pacific. On the other hand, an enhanced atmospheric heat source over the NPSTF, which is related to increased rainfall, acts to excite an anomalous cyclonic circulation system in the troposphere to the northwest of the NPSTF, which can explain the enhanced component of the EAJS over the Northwest Pacific. The two mechanisms may combine to enhance the EAJS.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第2期144-156,共13页 大气科学进展(英文版)
基金 jointly supported by the Ministry of Science and Technology of China,through the National Basic Research Program of China(Grant No.2012CB955602) the National Natural Science Foundation of China(Grant Nos.41575077,41490643 and 41275094) a project funded by the PAPD(Priority Academic Program Development of Jiangsu Higher Education Institutions) supported by the Innovation Project for Graduate Student of Jiangsu Province(Grant No.KYLX15-0860)
关键词 North Pacific subtropical front East Asian jet stream transient eddy activity atmospheric heat source North Pacific subtropical front, East Asian jet stream, transient eddy activity, atmospheric heat source
  • 相关文献

同被引文献29

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部