期刊文献+

考虑老化因子的单设备系统健康预测研究 被引量:1

Equipment Health Prognosis Based on Aging Factor Hidden Semi-Markov Model
下载PDF
导出
摘要 针对传统隐半马科夫模型在故障诊断和预测应用中的不足,本篇文章在隐半马科夫模型的基础上,考虑设备的实际老化情况,设计出一种设备老化因子,并把它集成到预测模型中,识别出设备所处的健康状态,然后运用集成模型中的信息结合设备的失效率函数,设计出一种新的设备剩余寿命预测方法,最后结合案例,分析模型的有效性。 Due to the deficiency of traditional HSMM applied in fault diagnosis and prognosis, according to the deterioration of equipment,this paper presents an aging factor based on HSMM model and use this integrated model to diagnosis the health state of equipment. To predict the remaining useful life of the equipment ,hazard rate is introduced to combine with the health- state transition matrix. Finally, through a case study the performances of the HSMM with aging factors are be verified.
作者 秦超 吕文元
出处 《技术与创新管理》 2017年第1期85-88,99,共5页 Technology and Innovation Management
基金 国家自然科学基金资助项目(71071097 71471116) 上海市浦江人才计划资助(14PJC077) 上海市一流学科项目资助(S1201YLXK)
关键词 老化因子 隐半马科夫模型 寿命预测 aging factor Hidden Semi-Markov Model (HSMM) residual life forecast
  • 相关文献

参考文献4

二级参考文献34

  • 1何正友,蔡玉梅,钱清泉.小波熵理论及其在电力系统故障检测中的应用研究[J].中国电机工程学报,2005,25(5):38-43. 被引量:188
  • 2Miao Q, Makis V. Condition monitoring and classification of rotating machinery using wavelets and. hidden Markov models [ J ]. Mechanical Systems and Signal Processing, 2007, 21:840 - 855.
  • 3Zhang X, Xu R, Kwan C, et al. An integrated approach to bearing fault diagnostics and prognostics[J ]. Proceedings of the 2005 American Control Conference, 2005, 4:2750 - 2755.
  • 4Dong M, He D. A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology[J ]. Mechanical Systems and Signal Processing, 2007, 21(5) :2248 - 2266.
  • 5Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition [J ]. Proceedings of the IEEE, 1989, 77(2) : 257 - 285.
  • 6Murphy K P. Hidden semi-Markov models (HSMMs) [EB/OL]. [ 2002 ]. http://www, ai. mit. edu/-murphyk.
  • 7Yu S Z, Kobayashi H. An efficient forward-backward algorithm for an explicit-duration hidden Markov model [J]. IEEE Signal Processing Letters, 2003, 10(1) :1 - 14.
  • 8Meeker W Q, Escobar L A. Statistical methods for reliability data [M]. New York: John Wiley & Sons, 1998.
  • 9Bunks C, McCarthy D, Al-Ani T. Condition-based maintenance of machines using hidden Markov models [ J ]. Mechanical Systems and Signal Processing, 2000, 14(4) : 597- 612.
  • 10RABINER L R. A tutorial on hidden Markov models and se- lected applications in speech recognition [ J ]. Proc of the IEEE,1989,77(2) :257 -286.

共引文献50

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部