期刊文献+

4.4 A Resolution Cryo-EM structure of human mTOR Complex 1 被引量:7

4.4 A Resolution Cryo-EM structure of human mTOR Complex 1
原文传递
导出
摘要 Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates signals from growth factors, cel- lular energy levels, stress and amino acids to control cell growth and proliferation through regulating trans- lation, autophagy and metabolism. Here we determined the cryo-electron microscopy structure of human mTORC1 at 4.4 A resolution. The mTORCI comprises a dimer of heterotrimer (mTOR-Raptor-mLST8) mediated by the mTOR protein. The complex adopts a hollow rhomboid shape with 2-fold symmetry. Notably, mTORC1 shows intrinsic conformational dynamics. Within the complex, the conserved N-terminal caspase- like domain of Raptor faces toward the catalytic cavity of the kinase domain of mTOR. Raptor shows no caspase activity and therefore may bind to TOS motif for sub- strate recognition. Structural analysis indicates that FKBP12-Rapamycin may generate steric hindrance forsubstrate entry to the catalytic cavity of mTORCI. The structure provides a basis to understand the assembly of mTORC1 and a framework to characterize the regu- latory mechanism of mTORC1 pathway. Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates signals from growth factors, cel- lular energy levels, stress and amino acids to control cell growth and proliferation through regulating trans- lation, autophagy and metabolism. Here we determined the cryo-electron microscopy structure of human mTORC1 at 4.4 A resolution. The mTORCI comprises a dimer of heterotrimer (mTOR-Raptor-mLST8) mediated by the mTOR protein. The complex adopts a hollow rhomboid shape with 2-fold symmetry. Notably, mTORC1 shows intrinsic conformational dynamics. Within the complex, the conserved N-terminal caspase- like domain of Raptor faces toward the catalytic cavity of the kinase domain of mTOR. Raptor shows no caspase activity and therefore may bind to TOS motif for sub- strate recognition. Structural analysis indicates that FKBP12-Rapamycin may generate steric hindrance forsubstrate entry to the catalytic cavity of mTORCI. The structure provides a basis to understand the assembly of mTORC1 and a framework to characterize the regu- latory mechanism of mTORC1 pathway.
出处 《Protein & Cell》 SCIE CAS CSCD 2016年第12期878-887,共10页 蛋白质与细胞(英文版)
基金 We thank staff members Biomedical Core Facility, Fudan University and National Center for Protein Science Shanghai for their help on Mass Spectrometry analyses. We thank the Tsinghua Cryo-EM Facility and High Performance Computation Facility of National Center for Protein Science Beijing for their support in cryo-EM data collection and processing. This work was supported by Grants from the National Natural Science Foundation of China (Grant Nos. U1432242, 31425008, 91419301), Basic Research Project of Shanghai Science and Technology Commission (No. 12JC1402700), the Program of Shanghai Subject Chief Scientist (,No. 14XD1400500).
关键词 mTORC1 STRUCTURE cryo-electronmicroscopy mTORC1 structure cryo-electronmicroscopy
  • 相关文献

同被引文献23

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部