摘要
引入一个离散内积,应用Gram-Schmidt正交化过程,得到离散正交多项式(DOPs)集,推出一个基于DOPs的求和不等式,该不等式包含一个非负整数N作为参数,N越大,这个不等式越精确。应用此求和不等式,建立一类离散线性时滞系统的稳定性判据。数值例子说明了本方法的有效性,同时给出了与一些现有结果的比较。
By introducing a discrete inner product, a set of discrete orthogonal polynomials (DOPs) is obtained by applying the Gram-Schmidt orthogonalization process. From which, a DOPs-based summation inequality, containing a nonnegative integer N as a parameter, is proven. The larger the parameter N is, the more accurate the DOPs-based summation inequality becomes. The DOPs-based summation inequality is applied to establish stability criterion for a class of linear delayed discrete-time systems. The effective- ness of the proposed approach is illustrated by a numerical example.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2016年第6期701-707,共7页
Journal of Natural Science of Heilongjiang University
基金
Supported by the National Natural Science Foundation of China(11371006)
the Natural Science Foundation of Heilongjiang Province(F201326
A201416)
the Scientific Research Fund of Heilongjiang Provincial Education Department(12541603)
the2015 Heilongjiang University Innovation Research Fund for Graduates(YJSCX2015-094HLJU)