期刊文献+

余纯平坦模与CFH环 被引量:1

Copure flat modules and CFH-rings
下载PDF
导出
摘要 设R是环。称左R-模M为余纯平坦模,是指对于任意的内射右R-模E,都有TorR1(E,M)=0;称环R为左CFH(Copure-Flat-Hereditary)环,是指左余纯平坦模的子模是左余纯平坦模。证明R是左CFH环,当且仅当内射右模的平坦维数不超过1;当且仅当R的每个左理想是余纯平坦的。 Let R be a ring. A left R- module M is called copure flat if TorR1(E,M) =0 for any injective right R- module E. A ring R is said to be left CFH (Copure-Flat-Hereditary) tings if every submodule of left copure fiat modules is copure fiat. It is proved that R is a left CFH ring if and only if the fiat dimen- sion of injective right modules is at most one; if and only if every ideal of R is copure fiat.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2016年第6期719-722,共4页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11171240) 教育部博士点基金资助项目(20125134110002) 四川省教育厅科研基金资助项目(15ZB0030) 四川师范大学优秀论文培育基金资助项目(校研字[2015]5号-1)
关键词 余纯平坦模 左CFH环 理想 copure flat modules left CFH rings ideal
  • 相关文献

参考文献1

二级参考文献8

  • 1张力宏.右IF-环及凝聚环的挠理论[J].数学学报(中文版),1995,38(1):117-126. 被引量:8
  • 2BASS H. Finitistic dimension and a homological generalization of semi-primary rings[ J]. Transactions of the American Mathematical Society, 1960, 95(3) : 466 -486.
  • 3ENOCHS E E, JENDA O M G. Copure injeetive resolutions, flat resolvents and dimensions[ J]. Commentationes Mathematieae Universitatis Caroli- nae, 1993, 34(2) : 203 -211.
  • 4MAO L X, DING N Q. Relative copure injective modules and copure fiat medules[ J]. Journal of Pure and Applied Algebra, 2007, 208(2) : 635 -646.
  • 5DING N Q, CHEN J L. On copure flat modules and copure flat resolvents[J]. Conununications in Algebra, 1996, 24(3) : 1071 -1081.
  • 6FU X H, DING N Q. On strongly copure flat modules and copure fiat dimensions [ J ]. Communications in Algebra, 2010, 38 (12) : 4531 -4544.
  • 7COLLY R R. Rings which have fiat injective modules[ J]. Journal of Algebra, 1975, 35 (1) : 239 -252.
  • 8WANG F G, QIAO L, KIM H. Super finitely presented modules and Gorenstein projective modules[ J]. Communications in Algebra, 2016, 44 (9) : 405 - 407.

共引文献3

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部