期刊文献+

带阻尼项的(q,p)-Laplace问题周期解的存在性

Existence of periodic solution for( q,p)-Laplace problem with a damped vibration
下载PDF
导出
摘要 (q,p)-Laplace系统是一类非常重要的微分方程模型,来自于非牛顿流体问题及非线性弹性问题。利用临界点理论中的极大极小方法,研究一类带有阻尼项的(q,p)-Laplace问题周期解的存在性。将此类问题的周期解,转化为定义在一个适当空间上能量泛函的临界点,根据鞍点定理,得到新的存在性定理。结论推广并发展了已有文献中的相关结果。 (q,p) -Laplace system is a very important model of differential equation which comes from the non-Newtonian fluid problem and the nonlinear elasticity. By using max-min methods in critical point the- ory, the existence of periodic solution for a class of (q,p) -Laplace problem with damped vibration is studied. The periodic solution problem is first converted into the critical point of a functional defined on a proper space, then a new existence theorem is obtained via saddle point theorem. The existence theorem extends and improves some results in literatures.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2016年第6期735-739,共5页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11571176)
关键词 周期解 (q p)-Laplace CERAMI条件 鞍点定理 periodic solution ( q ,p) -Laplace Cerami condition saddle point theorem
  • 相关文献

参考文献2

二级参考文献20

  • 1王少敏,杨培亮.一类二阶哈密顿系统的周期解[J].江西师范大学学报(自然科学版),2007,31(2):174-177. 被引量:2
  • 2TIAN Y, GE W G. Periodic solutions of nonautonomous second-order systems with p-Laplacian [ J ]. Nonlinear Anal, 2007, 66:192-203.
  • 3JEBELEAN P, SANU G M. Ordinary p-Laplacian systems with nonlinear boundary conditions [ J ]. Math Anal Appl, 2006, 313 (2) : 738-753.
  • 4FILIPPAKIS M, GASINSKI L, PAPAGEORGIOU N S. Periodic problems with asymmetric nonlinearities and non- smooth potentials [ J ]. Nonlinear Anal, 2004, 58 (5 - 6) : 683 - 702.
  • 5LV H SH, REGAN D O, AGARWAL R P. On the existence of multiple periodic solutions for the vector p-Laplacian critical point theory [ J ]. Appl Math, 2005, 50 (6) : 555 - 568.
  • 6TANG CH L, WU X P. Notes on periodic solutions of subquadratic second order systems [ J]. Math Anal Appl, 2003, 285 ( 1 ) : 8 - 16.
  • 7RABINOWITZ P H. On subharmonic solutions of Hamil- tonian systems [J]. Pure Appl Math, 1980, 33(5) : 609 - 633.
  • 8PASCA D. Periodic solutions of second-order differential inclusions systems with p-Laplacian [ J ]. Math Anal Appl, 2007, 325 (1) : 90 - 100.
  • 9MAWHIN J. Some boundary value problems for Hartmantype perturbations of the ordinary vector p-Laplacian [J]. Nonlinear Anal, 2000, 40 ( 1 - 8 ) : 497 - 503.
  • 10LIU P, AN T Q, YANK F. Existence of periodic solutions of nonautonomous second-order differential systems with (q,p) -Laplacian [J]. Journal of Inner Mongolia University: Natural Science Edition, 2011, 42(2) : 121 - 126.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部