期刊文献+

Effect of DOPO-containing Flame Retardants on Poly(lactic acid): Non-flammability, Mechanical Properties and Thermal Behaviors 被引量:3

Effect of DOPO-containing Flame Retardants on Poly(lactic acid): Non-flammability, Mechanical Properties and Thermal Behaviors
原文传递
导出
摘要 The flame retardancies of three kinds of 9,10-dihydro-9-oxa-10-phosphaphenan-threne 10-oxide(DOPO)- containing flame retardant(A1, A2, A3)/poly(lactic acid)(PLA) composites[PA-n/(Ax-y), n= 1--12; x= l, 2, 3, denoting three kinds of flame retardants; y= 10%, 20%, 30%, 40%, denoting the mass fraction of Ax] were greatly enhanced by melt blending of flame retardant Ax with PLA, including twin-screw extrusion and injection-molding processes. With only 10%(mass fraction) of Ax added to PLA, good flame retardancy with limiting oxygen index(LOI) values of more than 33% was achieved. As the Ax mass fraction was further increased to 20%, PA-n/(Ax-20%) composites showed much better flame retardancy(LOI~〉35% and UL-94 V-0 rating). Moreover, the thermal degradation behaviors and mechanical properties of PA-n/(Ax-y) composites were investigated via thermogravimetric analysis(TGA), differen- tial thermal analysis(DTA), tensile testing, notched impact-bar testing, and dynamic mechanical analysis(DMA). TGA results show that PA-n/(Ax-y) composites have slower rate of mass loss and much higher char yield, compared to neat PLA. With the addition of Ax to PLA, the DTA and DMA results indicate slight variations in glass transition tcmpe- ratures(Tg) of PA-n/(Ax-y) composites. Based on TGA results under nonisothermal conditions, the thermal degrada- tion kinetics of PA-n/(Ax-y) composites were studied by KAssinger's and Ozawa's methods. These thermal degrada- tion dynamic analyses show lower activation energies(EK or Eo) for PA-n/(Ax-y) composites, corresponding to higher mass fractions of Ax(from 10% to 40%). The PA-n/(Ax-y) composites with good flame retardancy and good mecha- nical properties obtained in this study could be potential candidates for fire- and heat-resistant applications in auto- motive engineering and building fields with more safety and excellent performance. The flame retardancies of three kinds of 9,10-dihydro-9-oxa-10-phosphaphenan-threne 10-oxide(DOPO)- containing flame retardant(A1, A2, A3)/poly(lactic acid)(PLA) composites[PA-n/(Ax-y), n= 1--12; x= l, 2, 3, denoting three kinds of flame retardants; y= 10%, 20%, 30%, 40%, denoting the mass fraction of Ax] were greatly enhanced by melt blending of flame retardant Ax with PLA, including twin-screw extrusion and injection-molding processes. With only 10%(mass fraction) of Ax added to PLA, good flame retardancy with limiting oxygen index(LOI) values of more than 33% was achieved. As the Ax mass fraction was further increased to 20%, PA-n/(Ax-20%) composites showed much better flame retardancy(LOI~〉35% and UL-94 V-0 rating). Moreover, the thermal degradation behaviors and mechanical properties of PA-n/(Ax-y) composites were investigated via thermogravimetric analysis(TGA), differen- tial thermal analysis(DTA), tensile testing, notched impact-bar testing, and dynamic mechanical analysis(DMA). TGA results show that PA-n/(Ax-y) composites have slower rate of mass loss and much higher char yield, compared to neat PLA. With the addition of Ax to PLA, the DTA and DMA results indicate slight variations in glass transition tcmpe- ratures(Tg) of PA-n/(Ax-y) composites. Based on TGA results under nonisothermal conditions, the thermal degrada- tion kinetics of PA-n/(Ax-y) composites were studied by KAssinger's and Ozawa's methods. These thermal degrada- tion dynamic analyses show lower activation energies(EK or Eo) for PA-n/(Ax-y) composites, corresponding to higher mass fractions of Ax(from 10% to 40%). The PA-n/(Ax-y) composites with good flame retardancy and good mecha- nical properties obtained in this study could be potential candidates for fire- and heat-resistant applications in auto- motive engineering and building fields with more safety and excellent performance.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2017年第1期143-149,共7页 高等学校化学研究(英文版)
关键词 Poly(lactic acid) composite Flame retardancy Thermal degradation kinetics Poly(lactic acid) composite Flame retardancy Thermal degradation kinetics
分类号 O [理学]
  • 相关文献

同被引文献14

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部