期刊文献+

基于双树复小波变换和形态滤波的PPG信号去噪方法 被引量:4

A Hybrid Denoising Method for PPG Signal Based on Dual Tree Complex Wavelet Transform and Morphological Filtering
下载PDF
导出
摘要 脉搏信号包含大量的噪声,具有强烈的非线性和非平稳性。针对传统的小波变换去噪算法的缺陷,本文提出了一种基于双树复小波变换和形态滤波的去噪算法,具有结构简单、数学含义清晰及计算复杂度低等优点,有效的克服了离散小波变换的平移敏感性和频率混淆。实验表明,该算法可以有效的去除脉搏信号中工频干扰及肌电干扰等高频噪声,其信噪比及均方差等定量指标均明显优于传统的阈值去噪算法,能得到较干净的脉搏信号波形。 The pulse signal contains a lot of noise and therefore has strong nonlinear and non-stationary. Aiming at the defects of traditional wavelet transform denoising method, this paper proposes a denoising algorithm based on the dual tree complex wavelet transform and morphological filtering which has the advantages of simple structure, clear mathematical meaning and low computational complexity, effectively overcomes the translation sensitivity and frequency confusion of discrete wavelet transform. Experiments show that the proposed algorithm can effectively remove the high frequency noise of pulse signal such as the power frequency interference and the myoelectricity interference, has the better quantitative indicators such as signal-to-noise ratio and mean square error than the traditional threshold denoising algorithm. Therefore, a clean pulse signal waveform can be obtained.
机构地区 重庆邮电大学
出处 《生命科学仪器》 2016年第5期54-56,共3页 Life Science Instruments
基金 国家自然科学基金(61301124 61471075 61671091)
关键词 脉搏信号 去噪算法 双树复小波变换 形态学滤波 pulse wave signal denoising algorithm DTCWT morphological filering
  • 相关文献

参考文献3

二级参考文献50

  • 1滕晓菲,张元亭.移动医疗:穿戴式医疗仪器的发展趋势[J].中国医疗器械杂志,2006,30(5):330-340. 被引量:84
  • 2刘志敏.数学形态学在图像分析中的应用研究[博士学位论文].上海交通大学博士学位论文,1997.12.
  • 3杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 4[2]Kingsbury N G.Image processing with complex wavelets[J].Phil.Trans.Roy.Soc.,1999,357(9):2543-2560.
  • 5[3]Kingsbury N G.Complex wavelets for shift invariant analysis and filtering of signals[J].Appl.Comp.Harmonic Anal.,2000,10(3):234-253.
  • 6[4]Kingsbury N G.The dual-tree complex wavelet transform:A new efficient tool for image restoration and enhancement[A].Proc.European Signal Processing Conf.[C].Rhodes,1998,319-322.
  • 7[5]Selesnick I W.Hilbert Transform Pairs of Wavelet Bases[J].IEEE Signal Processing Letters,2001,8(6):170-173.
  • 8[6]Ozkaramanli H,Yu R.On the phase condition and its solution for Hilbert transform pairs of wavelet bases[J].IEEE Trans.Signal Processing,2003,51(12):3293-3294.
  • 9[7]Yu R,Ozkaramanli H.Hilbert transform pairs of orthogonal wavelet bases:necessary and sufficient conditions[J].IEEE Trans.Signal Processing,2005,53(12):4723-4725.
  • 10[8]Selesnick I W.The design of approximate Hilbert transform pairs of wavelets bases[J].IEEE Trans.Signal Processing,2002,50(5):1144-1152.

共引文献110

同被引文献33

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部