摘要
Ziyang County, Shaanxi Province, China is a world known selenium(Se)-enriched area, and a severe selenosis incident was reported in Naore Village during the 1990 s. This study investigated the geochemical characteristics of Se and its fractions in Se-enriched rocks from Ziyang. Se distribution is uneven, ranging from 0.23 to 57.00 μg/g(17.29±15.52 μg/g). Se content is higher in slate than chert, and even lower in carbonate rocks. Cd, As and V are enriched but Pb is depleted in Se-enriched strata. Se has different correlations both with TS(total sulfur)(R^2=0.59 for chert) and TC(total carbon)(R^2=0.77 for slate, R^2=0.87 for carbonate). Se has significant positive correlations with V(r=0.65), As(r=0.485), Cd(r=0.459) and Pb(r=0.405). The Se level correlates with mineral content, positively with pyrite, chlorite and illite, negatively with albite. Se associated with sulfide/selenide and elemental Se are the predominant fractions of total recovered Se, suggesting that a reducing environment and the formation of sulfides were significant to Se deposition during its geochemical cycle. Although low concentration of bio-available Se(average 5.62%±3.69%) may reduce the risk of Se poisoning in the target area, utilization of Se-rich rock as natural fertilizer should be restricted.
Ziyang County, Shaanxi Province, China is a world known selenium(Se)-enriched area, and a severe selenosis incident was reported in Naore Village during the 1990 s. This study investigated the geochemical characteristics of Se and its fractions in Se-enriched rocks from Ziyang. Se distribution is uneven, ranging from 0.23 to 57.00 μg/g(17.29±15.52 μg/g). Se content is higher in slate than chert, and even lower in carbonate rocks. Cd, As and V are enriched but Pb is depleted in Se-enriched strata. Se has different correlations both with TS(total sulfur)(R^2=0.59 for chert) and TC(total carbon)(R^2=0.77 for slate, R^2=0.87 for carbonate). Se has significant positive correlations with V(r=0.65), As(r=0.485), Cd(r=0.459) and Pb(r=0.405). The Se level correlates with mineral content, positively with pyrite, chlorite and illite, negatively with albite. Se associated with sulfide/selenide and elemental Se are the predominant fractions of total recovered Se, suggesting that a reducing environment and the formation of sulfides were significant to Se deposition during its geochemical cycle. Although low concentration of bio-available Se(average 5.62%±3.69%) may reduce the risk of Se poisoning in the target area, utilization of Se-rich rock as natural fertilizer should be restricted.
作者
Huan Tian
Zhenzhen Ma
Xiaolei Chen
Hongyu Zhang
Zhengyu Bao
Changhua Wei
Shuyun Xie
Shitou Wu
Huan Tian Zhenzhen Ma Xiaolei Chen Hongyu Zhang Zhengyu Bao. Changhua Wei Shuyun Xie Shitou Wu(State Key Laboratory of Biogeology and Environmental Geology,School of Earth Sciences,China University of Geosciences,Wuhan 430074,China;Zhejiang Institute of Geological Survey,Hangzhou 311203,China;Faculty of Material Science and Chemistry,China University of Geosciences,Wuhan 430074,China;Geoscience Center Gottingen,Geochemistry Department,University of Gottingen,Gottingen 37077,Germany)
基金
supported by the Foundation of China Geological Survey(Nos.12120113087100,12120113022600)
the Basic Scientific Research of the Institute of Geophysical Geochemical Exploration,Chinese Academy of Geological Sciences(No.WHS201302)