期刊文献+

过表达核糖体装配调控蛋白NOG1对番茄果实大小的影响

Effects of Overexpressing Ribosome Assembly Protein NOG1 in Tomato on the Regulation of Fruit Size
原文传递
导出
摘要 作物果实大小是作物非常重要的农艺性状,直接影响经济效益。核仁G蛋白-1(NOG1)通过调控核糖体60S大亚基的装配影响细胞蛋白质的合成,而蛋白质的合成与作物果实大小有关。但目前尚不清楚NOG1是否参与调控植物果实大小的形成。为了研究NOG1是否参与调控植物果实大小,本试验构建了NOG1过表达载体(OE)转化番茄品种Micro-Tom,得到23棵T1代过表达转基因阳性苗。对T2代阳性苗和对照果实大小和重量分析的结果表明:过表达NOG1可以增加转基因番茄果实的大小和重量。这些结果说明NOG1蛋白通过控制蛋白质合成,参与了植物调控果实大小。 The fruit size of crops is an important agronomic trait, which affects the economic benefit directly in agriculture production. Nucleolus G protein-1(NOG1) was involved in assembling of 60 S ribosomal subunits which regulates protein synthesis in cytoplasm. Protein synthesis is related to fruit size. But it has not been reported whether NOG1 is involved in the regulation of plant fruit size. The 23 transgenic tomato(Solanum lycopersicum cv. Micro-Tom) plantlets over-expressed Nb NOG1 were obtained via agrobacterium mediated transformation.Analysis and comparison on weight and the size of fruits between control and T2 transgenic tomatoes lines revealed that overexpression of Nb NOG1 caused the increase and augmentation of fruit weight and size in transgenic tomatoes. These results displayed that NOG1 is involved in the modulation of fruit size via regulating protein synthesis.
作者 赵一博 赵慧 丁艳 曾博 马杰莹 王文茹 郭江波 辛翠花 Zhao Yibo Zhao Hui Ding Yan Zeng Bo Ma Jieying Wang Wenru Guo Jiangbo Xin Cuihua(College of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010)
出处 《分子植物育种》 CAS CSCD 北大核心 2017年第1期39-44,共6页 Molecular Plant Breeding
基金 国家自然科学地区基金项目(31260344 31660414 31660064) 内蒙古自然科学基金(2011BS0506 2012MS-0301) 内蒙古科技大学大学生创新基金(2015072 2015075)共同资助
关键词 核仁G蛋白-1(NOG1) 过表达 果实大小 蛋白质合成 Nucleolus G protein 1(NOG1) Overexpression Fruit size Protein synthesis
  • 相关文献

参考文献1

二级参考文献17

  • 1Ballester A, Cervera M, Pena L. 2007. Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep, 26 ( 1 ) : 39 -45.
  • 2Bevan M W, Flavell R B, Chihon M D. 1983. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature, 304:184 - 187.
  • 3de Vetten N, Wolters A M, Raemakers K, van der Meet I, ter Stege R, Heeres E, Heeres P, Visser R. 2003. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol, 21 (4) : 439 -442.
  • 4Gleave A P, Mitra D S, Mudge S R, Morris B A. 1999. Selectable marker-free transgenic plants without sexual crossing: Transient expression of Cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol, 40 (2) : 223 -235.
  • 5Hepburn A G, White J. 1985. The effect of right terminal repeat deletion on the oncogenicity of the T-region of pTiT37. Plant Mol Biol, 5 : 3 - 11.
  • 6Jefferson R A. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep, 5:387 -405.
  • 7Jen G C, Chilton M D. 1986. The fight border region of pTiT37 T-DNA is intrinsically more active than the left border region in promoting T-DNA transformation. Proc Natl Acad Sci, 83:3895 -3899.
  • 8Jia H, Liao M, Verbelen J P, Vissenberg K. 2007. Direct creation of marker-free tobacco plants from agroinfiltrated leaf discs. Plant Cell Rep, 26 (11) : 1961 -1965.
  • 9Jia H, Pang Y, Chen X, Fang R. 2006. Removal of the selectable marker gene from transgenic tobacco plants by expression of Cre recombinase from a tobacco mosaic virus vector through agroinfection. Transgenic Res, 15 (3) : 375 -584.
  • 10Kittiwongwattana C, Lutz K, Clark M, Maliga P. 2007. Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol Biol, 64 (1-2): 137-143.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部