期刊文献+

对N次观测Pareto分布参数有效估计范围的扩展

Widening Efficacious Parameter Estimation Range of Multi-look Pareto Distribution
下载PDF
导出
摘要 基于<zln(z)>方法的N次观测Pareto分布参数估计不能有效估计形状参数小于1的情形。该文采用<zrln(z)>方法对基于>zln(z)>的方法进行扩展,将N次观测Pareto分布的形状参数的有效估计范围进行扩大。文中推导了N次观测Pareto分布参数估计的表达式,从理论上证明该方法能够估计小于1的形状参数。仿真结果表明:r<<1时,<zrln(z)>方法能够在该扩大的范围内有效地估计形状参数。 The method for estimating the parameters of multi-look Pareto distribution based on 〈zln(z)〉 can not estimate the shape parameter less than 1. To overcome the drawback, it is generalized by 〈zrln(z)〉, which widens the efficacious range for shape parameter to be estimated. The expression of parameter estimation is deduced so as to demonstrate that the proposed method is able to estimate the shape parameter less than 1 theoretically. The simulation results validate that the method of 〈zrln(z)〉 is able to estimate the shape parameter more efficaciously in the range of r〈〈1.
作者 胡冲 罗丰 张林让 范一飞 陈帅霖 HU Chong LUO Feng ZHANG Linrang FAN Yifei CHEN Shuailin(National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China)
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第2期412-416,共5页 Journal of Electronics & Information Technology
基金 国家重大科学仪器设备开发专项(2013YQ20060705)~~
关键词 参数估计 雷达杂波 PARETO分布 N次观测 Parameter estimation Radar clutter Pareto distribution Multi-look
  • 相关文献

参考文献2

二级参考文献31

  • 1石志广,周剑雄,付强.K分布海杂波参数估计方法研究[J].信号处理,2007,23(3):420-424. 被引量:18
  • 2姜斌,王宏强,黎湘,郭桂蓉.S波段雷达实测海杂波混沌分形特性分析[J].电子与信息学报,2007,29(8):1809-1812. 被引量:17
  • 3Jakeman E and Pusey P N. A model for non-Rayleigh sea echo [J]. IEEE Trans. on Antennas Propag., 1976, 24(6): 806-814.
  • 4Ward K D. Compound representation of high resolution sea clutter [J]. Electron. Lett. 1981,17(16): 561-563.
  • 5Armstrong B C and Griffiths H D. CFAR detection of fluctuating targets in spatially correlated K-distributed clutter [J]. IEE Proc-F, 1991, 138(2): 139-152.
  • 6Joughin I R, Percival D B, and Winebrenner D P. Maximum likelihood estimation of K-distribution parameters for SAR data [J]. IEEE Trans on Geosciences and Remote Sensing, 1993, 31(5): 989-999.
  • 7Blacknell D. Comparison of parameter estimators for K- distribution [J]. IEE Proc.-Radar, Sonar, Navig., 1994, 141(1): 45-52.
  • 8Roberts W J J and Furui S. Maximum likelihood estimation of K-distribution parameters via the expectation- maximization algorithm [J]. IEEE Trans. on Signal Processing, 2000, 48(12): 3303-3306.
  • 9Wachowiak M P, Smolfova R, Zurada J M, and Elmaghraby A S. Estimation of K distribution parameters using neural networks [J]. IEEE Trans. on Biomedical Engineering, 2002, 49(6): 617-620.
  • 10Blacknell D and Tough R J A. Parameter estimation for the K-distribution based on [zlog(z)] [J]. IEE Proc.- Radar, Sonar, Navig., 2001, 148(6): 309-312.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部