期刊文献+

5-Aza-CdR对DU145前列腺癌细胞系RNF180基因去甲基化作用的初步研究 被引量:2

Preliminary Study on the Effect of 5-Aza-CdR on the Demethylation of RNF180 in Prostate Cancer Cell Line DU145
下载PDF
导出
摘要 目的通过观察去甲基化药物5-Aza-Cd R对DU145前列腺癌细胞系RNF180基因的影响,探讨前列腺癌细胞系中肿瘤抑制基因RNF180失活的机制和原因。方法运用MTT法检测不同浓度(0、1、2、5、10、15、20μmo I/L)5-Aza-Cd R对前列腺癌细胞增殖能力的影响,同时筛选出1个最适药物浓度(5μmo I/L);分别采用Western blotting、实时PCR、甲基化特异性PCR(MSP)法检测最适药物浓度处理前后前列腺癌细胞中RNF180的表达情况。结果在一定范围内,5-Aza-Cd R对前列腺癌细胞DU145增殖能力的影响随着药物浓度的增加和药物处理时间的增长而加强(P<0.05);最适药物浓度处理后的前列腺癌细胞中RNF180蛋白及m RNA的表达量比处理前明显升高(P<0.05),而启动子区的甲基化程度明显降低。结论 5-Aza-Cd R能够逆转RNF180基因在DU145前列腺癌细胞中的高甲基化状态,解除RNF180基因表达沉默的状态。 Objective To investigate the mechanism and cause of the inactivation of tumor suppressor gene RNF180 in prostate cancer Cell line by observing the effect of 5-Aza-CdR on the RNF180 gene in prostate cancer cell line DU145. Methods MTT method was adopted to study the effect of 5-Aza-CdR (0, 1, 2,5,10,15 and 20 μmol/L)on the proliferation of prostate cancer cells. Western blotting, real-time PCR, and methylation specific PCR (MSP) were separately used to detect the expression of RNF180 in prostate cancer cells before and after the treatment of the most suitable drug concentration (5 μmol/L). Results In a certain range, the effect of 5-Aza-CdR on the proliferation of prostate cancer cell line DU145 was increased with the increase of drug concentxation and the time of drug treatment (P 〈 0.05). After the treatment of the most suitble drug concentration, the protein and mRNA expression of RNF180 in prostate cancer cells was significantly increased ( P 〈 0.05 ), but the methylafion of the promoter region was obviously decreased. Conclusion 5-Aza-CdR can reverse the methylafiou status of RNF180 gene in DU 145 prostate cancer cell line, and relieve the silencing status of RNF180 geue expression.
出处 《中国医科大学学报》 CAS CSCD 北大核心 2017年第2期140-144,共5页 Journal of China Medical University
关键词 5-AZA-CDR 前列腺癌 RNF180 去甲基化 5-Aza-CdR prostate cancer RNF180 demethylation
  • 相关文献

参考文献1

二级参考文献20

  • 1Miyoshi N, Wagatsuma H, Wakana S, et al. Identification of an imprinted gene, Meg3/Gtl2 and its human homolague MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q[J]. Genes Ceils, 2000, 5(3) :211-220.
  • 2Wylie AA, Murphy SK, Orton TC, et al. Novel imprinted DLK1/ GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation[ J]. Genome Res, 2000, 10(11) :1711-1718.
  • 3Zhang X, Zhou Y, Mehta KR, et al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells [ J ]. J Clin Endocrinol Metab, 2003, 88( 11 ) :5119-5126.
  • 4Zhou Y, Zhong Y, Wang Y, et al. Activation of p53 by MEG3 non-coding RNA [ J]. J Biol Chem, 2007, 282 (34) : 24731- 24742.
  • 5Astuti D, Latif F, Wagner K, et el. Epigenetic alteration at the DLK1-GTL2 imprinted domain in human neoplasia: analysis of neuroblastoma, phaeochromocytoma and Wilms' tumour[ J]. Br J Cancer, 2005, 92(8):1574-1580.
  • 6Braconi C, Kogure T, Valeri N, et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer[J]. Oncogene, 2011, 30(47) :4750-4756.
  • 7Zhang X, Gejman R, Mahta A, et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression [ J ]. Cancer Res, 2010, 70(6) :2350-2358.
  • 8Wang P, Ren Z, Sun P. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation [ J ]. J Cell Biochem, 2012, 113(6) : 1868-1874.
  • 9Zhou Y, Zhang X, Klibanski A. MEG3 noncoding RNA: a tumor suppressor[ J]. J Mol Endocrinol, 2012, 48 (3) : R45-R53.
  • 10Sheng X, Li J, Yang L, et al. Promoter hypennethylation influences the suppressive role of maternally expressed 3, a long non-coding RNA, in the development of epithelial ovarian cancer [ J ]. Oncol Rep, 2014, 32(1) :277-285.

共引文献5

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部