期刊文献+

GPU支持的低延迟引力波数据处理 被引量:1

GPU accelerated low latency gravitational wave data processing
原文传递
导出
摘要 只有快速识别出引力波信号,才可以制导电磁望远镜及时探测到相关的电磁信号,对于全面了解引力波源所发生的天体物理过程,具有十分重要的科学意义.本文针对在激光干涉引力波天文台(Laser Interferometer Gravitational-Wave Observatory,LIGO)在线运行的并行求和无限冲击响应滤波(Summed Parallel Infinite Impulse Response,SPIIR)流水线数据处理系统,具体介绍了如何在图形处理单元(Graphics Processing Unit,GPU)上采用多种性能优化手段,大幅度提高其数据处理的速度来满足LIGO低延迟实时数据处理的要求.并进一步描述了如何在高新LIGO(Advanced LIGO)基础上实现极低延迟数据处理的计算方法、性能优化方法与相关的工具支持. To enable prompt electromagnetic (EM) follow-up observations of GW events, it is very critical to identify the gravitational wave signal in real time so we can investigate the astrophysical events completely. In this paper we first described the LIGO (Laser Interferometer Gravitational-Wave Observatory) SPIIR (Summed Parallel Infinite Impulse Response) online data processing pipeline which can reduce the latency to meet real time requirement on GPU (Graphics Processing Unit) with multiple optimization methods. Moreover, to achieve extremely low latency for advanced LIGO data processing, this paper also presents the proposed computational method, performance optimization method and visualization tool.
作者 都志辉 温琳清 DU ZhiHui WEN LinQing(Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China Department of Physics, The University of Western Australia, Perth 6009, Australia)
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2017年第1期73-85,共13页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金(编号:61440057,61272087,61363019,61073008) 北京市基金项目(编号:4082016,4122039) 中国科学院科技创新交叉与合作团队项目 空间天气学国家重点实验室开放课题资助
关键词 引力波 数据处理 并行计算 图形处理单元 gravitational wave, data processing, parallel computing, GPU
  • 相关文献

参考文献1

二级参考文献112

  • 1Kim C, Perera B B P, McLaughlin M, et al. Implications of PSR J0737-3039B for the Galactic NS-NS binary merger rate. Mon Not R Astron Soc, 2015, 448(1): 928-938.
  • 2Abadie J, Abbott B P, Abbott R, et al. Predictions for the rates of compact binary coalescences observable by ground-based gravitationalwave detectors. Class Quantum Grav, 2010, 27(17): 173001.
  • 3Press W H, Teukolsky S A. Formation of close binaries by 2-body tidal capture. Astrophys J, 1977, 213(1): 183-192.
  • 4Lee H M, Ostriker J P. Cross-sections for tidal capture binary formation and stellar merger. Astrophys J, 1986, 310(1): 176-188.
  • 5Peters P C, Mathews J. Gravitational radiation from point masses in a Keplerian orbit. Phys Rev, 1963, 131(1): 435.
  • 6Goodman J, Hut P. Binary single-star scattering. 5. steady state binary distribution in a homogeneous static background of single stars. Astrophys J, 1993, 403(1): 271.
  • 7Farrell S A, Webb N A, Natalie A, et al. An intermediate-mass black hole of over 500 solar masses in the galaxy ESO 243-49. Nature,2009, 460(7251): 73-75.
  • 8Lee H M. Evolution of galactic nuclei with 10-m (circle dot), blackholes. Mon Not R Astron Soc, 1995, 272(3): 605-617.
  • 9Quinlan G D, Shapiro S L. Dynamical evolution of dense clusters of compact stars. Astrophys J, 1989, 343(2): 725-749.
  • 10Bahcall J N, Wolf R A. Star distribution around a massive black-hole in a globular cluster. Astrophys J, 1976, 209(1): 214-232.

共引文献4

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部