期刊文献+

自适应人工蜂群算法的盲源分离 被引量:3

Blind source separation based on adaptive artificial bee colony algorithm
下载PDF
导出
摘要 盲源分离(BSS)是传感器信号处理领域研究热点,针对传统盲源分离算法大多存在收敛速度慢、分离精度低、适用场合窄的缺点,提出了一种基于自适应人工蜂群算法的盲源分离。利用Givens旋转变换降低计算量,搜索策略引入自适应全局指导项动态调节最优解导向作用,选择策略采用自适应Boltzmann轮盘赌作改进平衡迭代各阶段选择压力集中程度。实验表明:基于自适应人工蜂群算法的盲源分离,能够加快收敛速度并显著提高分离精度至约3个数量级。 Blind source separation(BSS) becomes more attractive targets in sensor signal processing field. A BSS method based on adaptive artificial bee colony algorithm is proposed, aiming at problems of slow convergence, speed low computational precision and narrow application field of existing BSS methods. The algorithm uses Givens rotation to reduce amount of calculation, adaptive global guidance item is introduced in search strategy to dynamically adjust the optimal solution guiding role, and adaptive Bohzmann probability is adopted in selection strategy to adjust selective pressures. Simulation results show that the adaptive algorithm can speed up convergence rate and improve separation precision to about three orders of magnitude.
出处 《传感器与微系统》 CSCD 2017年第1期127-130,共4页 Transducer and Microsystem Technologies
基金 国家"863"计划资助项目(2012AA041701)
关键词 盲源分离 人工蜂群算法 自适应 搜索策略 选择策略 blind source separation(BSS) artificial bee colony algorithm adaptive search strategy selectionstrategy
  • 相关文献

参考文献4

二级参考文献38

  • 1蔺小林,蒋耀林.酉对称矩阵的QR分解及其算法[J].计算机学报,2005,28(5):817-822. 被引量:23
  • 2韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 3郭华.次正规矩阵、次酉矩阵、次厄米特矩阵及反次厄米特矩阵[J].大学数学,2007,23(2):174-177. 被引量:11
  • 4Common P. Independent component analysis. A new concept? [J]. Signal Processing, 1994,36 (3) : 287 - 314.
  • 5Cichoki A, Unbehauen R, Moszczynski R.A new on-line adaptive learning algorithm for blind separation of source signals[C]//Proc. ISANN, 1994:406 - 411.
  • 6Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation,1997,17(1) :25 -46.
  • 7Hyvarinen A. Fast and robust fixed--point algorithms for independent component analysis[J]. IEEE Trans. on Neural Networks, 1999,10(3):626 - 634.
  • 8Kennedy J, Eberhart R C. Particle swarm optimization[C]//Proc. of the IEEE International Conference on Neural Networks, 1995:1942 - 1948.
  • 9Shi Y, Eberhart R. A modified particle swarm optimizer[C]//Proc. of the IEEE International Conference on Evolutionary Computation. Piscatawa y, NJ : IEEE Press, 1998 : 69 - 73.
  • 10杜鹃,范啸涛,杨建康.自伴矩阵与Hermite二次型[J].成都理工大学学报(自然科学版),2007,34(4):478-481. 被引量:7

共引文献51

同被引文献21

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部