期刊文献+

面向用户偏好发现的隐变量模型构建与推理 被引量:3

Construction and inference of latent variable model oriented to user preference discovery
下载PDF
导出
摘要 电子商务应用中产生了大量用户评分数据,而这些数据中富含了用户观点和偏好信息,为了能够从这些数据中准确地推断出用户偏好,提出一种面向评分数据中用户偏好发现的隐变量模型(即含隐变量的贝叶斯网)构建和推理的方法。首先,针对评分数据的稀疏性,使用带偏置的矩阵分解(BMF)模型对其进行填补;其次,用隐变量表示用户偏好,给出了基于互信息(MI)、最大半团和期望最大化(EM)算法的隐变量模型构建方法;最后,给出了基于Gibbs采样的隐变量模型概率推理和用户偏好发现方法。实验结果表明,与协同过滤的方法相比,该方法能有效地描述评分数据中相关属性之间的依赖关系及其不确定性,从而能够更准确地推断出用户偏好。 Large amount of user rating data, involving plentiful users' opinion and preference, is produced in e-commerce applications. An construction and inference method for latent variable model ( i. e., Bayesian Network with a latent variable) oriented to user preference discovery from rating data was proposed to accurately infer user preference. First, the unobserved values in the rating data were filled by Biased Matrix Faetorization (BMF) model to address the sparseness problem of rating data. Second, latent variable was used to represent user preference, and the construction of latent variable model based on Mutual Information (MI), maximal semi-clique and Expectation Maximization (EM) was given. Finally, an Gibbs sampling based algorithm for probabilistic inference of the latent variable model and the user preference discovery was given. The experimental results demonstrate that, compared with collaborative filtering, the latent variable model is more efficient for describing the dependence relationships and the corresponding uncertainties of related attributes among rating data, which can more accurately infer the user preference.
作者 高艳 岳昆 武浩 付晓东 刘惟一 GAO Yan YUE Kun WU Haol FU Xiaodong LIU Weiyi(School of Information Science and Engineering, Yunnan University, Kunming Yunnan 650504, China Faculty of lnforrnation Engineering and Automation, Kunming University of Science and Technology, Kunming Yunnan 650500, China)
出处 《计算机应用》 CSCD 北大核心 2017年第2期360-366,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(61472345 61562090 61462056) 云南省应用基础研究计划项目(2014FA023 2014FA028) 云南省中青年学术和技术带头人才后备人才培育计划项目(2012HB004) 云南大学青年英才培育计划项目(XT412003) 云南大学创新团队培育计划项目(XT412011)~~
关键词 用户偏好 评分数据 贝叶斯网 隐变量模型 概率推理 带偏置的矩阵分解 user preference rating data Bayesian network latent variable model probabilistic inference biased matrix faetorization
  • 相关文献

参考文献4

二级参考文献104

  • 1REGELSON M,FAIN D.Predicting click-through rate using keyword clusters[C]//Proceedings of the Second Workshop on Sponsored Search Auctions,EC 2006.Michigan:ACM.2006.
  • 2AGARWAL D,BRODER A.CHAKRABARTI D,et al.Estimating rates of rare events at multiple resolutions. Proceedings of the ACM SIGMOD International Conference on Management of Data.Beijing:ACM,2007:16-25.
  • 3RICHARDSON M,DOMINIWSKA E,RAGNO R.Predicting Clicks:Estimating the Click-Through Rate for New Ads[C]//Proceedings of the 16th International Conference on World Wide Web,WWW 2007.Banff:ACM, 2007:521-530.
  • 4CHAKRABARTI D,AGARWAL D,JOSIFOVSKI V.Contextual Advertising by Combining Relevance with Click Feedback[C]//Proceedings of the 17th International Conference on World Wide Web,WWW 2008.Beijing: ACM,2008:417-426.
  • 5GOLLAPUDI S,PANIGRAHY R,GOLDSZMIDT M.Inferring Clickthrough Rates on Ads from Click Behavior on Search Results[C]//Proceedings of the Workshop on User Modeling for Web Applications,Fourth International Conference on Web Search and Web Data Mining,WSDM 2011.Hong Kong:ACM,2011.
  • 6YAN J,LIU N,WANG G,et al.How much can Behavioral Targeting Help Online Advertising?[C]//Proceedings of the 18th International Conference on World Wide Web,WWW 2009.Madrid:ACM,2009:261-270.
  • 7AHMED A,LOW Y,ALY M,et al.Scalable distributed inference of dynamic user interests for behavioral targeting [C]//Proceedings of the 17th ACM S1GKDD International Conference on Knowledge Discovery and Data Mining. San Diego,CA:ACM,2011:114-122.
  • 8WANG X,LI W,CUI Y,et al.Click Through Rate Estimation for Rare Events in Online Advertising.Online Multimedia Advertising:Techniques and Technologies,Chapterl[M/OL].2011[2012-06-15].http://labs.yahoo. com/node/434.
  • 9PEARL J.Probabilistic Reasoning in Intelligent Systems:Networks of Plausible Inference[M].San Mateo,CA: Morgan Kaufmann Publishers,1988.
  • 10RUSSEL S,NORVIG P.Artificial Intelligence—A Modern Approach[M].Boston:Pearson Education,Publishing as Prentice-Hall,2002.

共引文献61

同被引文献26

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部