期刊文献+

面向商品评分预测的隐变量模型构建与推理 被引量:2

Constructing and Inferring Latent Variable Model for Predicting Product Ratings
下载PDF
导出
摘要 用户偏好是决定用户对商品评分的隐含变量,以构建包含用户偏好的隐变量模型、描述评分数据中相关属性间任意形式依赖关系及其不确定性为主要目标,以贝叶斯网作为各属性间依赖关系及其不确定性表示的基本框架,由商品评分数据构建不含隐变量的商品评分模型,提出基于半团结构向其中插入描述用户偏好的隐变量的方法,从而构建包含用户偏好的隐变量模型,并给出基于EM算法的隐变量模型参数估计方法,进而提出隐变量模型的概率推理算法和相应的商品评分预测方法.建立在MovieLens和Book-Crossing数据上的实验结果表明,本文提出的隐变量模型构建和相应的评分预测方法是有效的. User preference is a latent variable that determines online product ratings. This paper is to construct the latent variable model with user preference, and describe arbitrary dependence relationships as well as the corresponding uncertainties in rating data by adop- ting Bayesian network as the preliminary framework. In this paper,we start from the rating data and construct the product rating model without latent variables at first. Then, we give the method for inserting latent variables based the semi-clique structure, so the model can be constructed to describe user preference by the inserted a latent variable. Following, we give the EM-algorithm based method for estimating parameters in the latent variable model. Finally, we propose the algorithm for probabilistic inferences of the latent variable model and the method for predicting user ratings. Experimental results on the MovieLens and Book-Crossing datasets show that our method is effective.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第2期352-356,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61472345 61562090 61562091)资助 云南省应用基础研究计划项目(2014FA023 2014FA028)资助 云南省中青年学术和技术带头人后备人才培养计划项目(2012HB004)资助 云南大学创新团队培育计划项目(XT412011)资助 云南大学青年英才培育计划 中青年骨干教师培养计划项目(XT412003)资助
关键词 在线商品评分 贝叶斯网 隐变量模型 用户偏好 评分预测 online product ratings Bayesian network latent variable model user preference rating prediction
  • 相关文献

参考文献2

二级参考文献23

  • 1RAJARAMAN A, ULLMAN J D. Mining of Massive Datasets[M]. London: Cambridge University Press, 2011.
  • 2BLANCO-FERNANDEZ Y, PAZOS-ARIAS J J, GIL-SOLLA A, et al. A flexible semantic inference methodolo- gy to reason about user preferences in knowledge-based recommender systems[J]. Knowledge-Based Systems, 2008, 21(4) : 305-320.
  • 3MCAULEY J, LESKOVEC J. Hidden factors and hidden topics: understanding rating dimensions with review text [C]//Proeeedings of the 7th ACM conference on Recommender systems. ACM, 2013: 165-172.
  • 4SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms [C]//Proceedings of the 10th international conference on World Wide Web. ACM, 2001 : 285-295.
  • 5KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8) : 30-37.
  • 6KOREN Y, BELL R. Advances in collaborative filtering[M]//KANTOR P B, RICCI F, ROKACH L, et al. Recommender Systems Handbook. New York: Springer, 2010: 145 -186.
  • 7BRODY S, EIHADAD N. An unsupervised aspect-sentiment model for online reviews[C]//Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, 2010: 804-812.
  • 8JO Y, OH A H. Aspect and sentiment unification model for online review analysis[C]//Proceedings of the fourth ACM international conference on Web search and data mining. ACM, 2011: 815-824.
  • 9TITOV I, MCDONALD R. Modeling online reviews with multi-grain topic models[C]//Proceedings of the 17th international conference on World Wide Web. ACM, 2008: 111-120.
  • 10TITOV I, MCDONALD R T. A Joint Model of Text and Aspect Ratings for Sentiment Summarization[C]//ACL, 2008(8) : 308-316.

共引文献11

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部