期刊文献+

基于双隐层BP网络的沈阳地区雷暴潜势预报模型 被引量:1

A Thunderstorm Potential Forecast Model of Shenyang Based on the Double Hidden Layer BP Artificial Neural Network
下载PDF
导出
摘要 利用沈阳市2007-2011年6、7、8月探空因子与闪电定位资料,选取适合当地雷暴潜势预报的9个因子,构建双隐层BP人工神经网络预报模型,对当地雷暴的潜势发展进行预报.结果表明:基于双隐层BP人工神经网络的预报模型临界成功指数CSI=57.46%、探测概率POD=79.38%、虚假报警率FAR=32.46%和总指数TS=74.89%,预报效果较令人满意;通过12h和6h潜势预报结果对比发现,6hBP神经网络模型预报效果好,更适用于沈阳地区雷暴潜势预报. In an experiment reported in this paper,nine factors suitable for thunderstorm potential forecast of Shenyang were selected based on the sounding factors and the lightning location data from 2007 to 2011in June,July and August in this city,and a double hidden layer BP artificial neural network prediction model was built to forecast the local thunderstorm potential development.The experiment showed that the double hidden layer BP artificial neural network prediction model gave satisfactory results,with a critical index of success of CSI=57.46%,a detection probability of POD=79.38%,a false alarm rate of FAR=32.46% and a total index of TS=74.89%.A comparison of the potential forecast results between 12hand6 hdemonstrated that the forecast effect of the 6hBP neural network model had better effect and was,therefore,more suitable for the thunderstorm potential forecast in Shenyang.
作者 林中冠 栾健 王迪 张春龙 栾澜 LIN Zhong-guan LUAN Jian WANG Di ZHANG Chun-long LUAN Lan(Liaoning Meteorological Service Center, Shenyang 110166, China China Meteoro/ogical Administration Training Center Liaoning Branch, Shenyang 110166, China Meteorological Disaster Prevention Technology Center in Heilongjiang Province, Harbin 151030, China Shenyang Agricultural University Agronomy Courtyard, Shenyang 110866, China)
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期84-91,共8页 Journal of Southwest University(Natural Science Edition)
基金 辽宁气象局博士科研专项资助项目(D201603)
关键词 双隐层 BP网络 雷暴 潜势预报 模型 double hidden layer BP neural network thunderstorm potential forecast model
  • 相关文献

参考文献16

二级参考文献174

共引文献506

同被引文献12

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部