摘要
设H是域k上的有限维Hopf代数,A是左H-模代数.本文研究了Gorenstein平坦(余挠)维数在A-模范畴和A#H-模范畴之间的关系.利用可分函子的性质,证明了(1)设A是右凝聚环,若A#H/A可分且φ:A→A#H是可裂的(A,A)-双模同态,则l.Gwd(A)=l.Gwd(A#H);(2)若A#H/A可分且φ:A→A#H是可裂的(A,A)-双模同态,则l.Gcd(A)=l.Gcd(A#H),推广了斜群环上的结果.
In this paper, we study the relationship of Gorenstein flat(cotorsion) dimensions between A-Mod and A#H-Mod. Using the properties of separable functors, we get that(1) Let A be a right coherent ring, assume that A#H/A is separable and φ : A → A#H is a splitting monomorphism of(A, A)-bimodules, then l.Gwd(A) = l.Gwd(A#H);(2) Assume that A#H/A is separable and φ : A → A#H is a splitting monomorphism of(A, A)-bimodules, then l.Gcd(A) =l.Gcd(A#H), which generalized the results in skew group rings.
作者
孟凡云
MENG Fan-yun(School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, Chin)
出处
《数学杂志》
北大核心
2017年第1期83-90,共8页
Journal of Mathematics
基金
Supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province(15KJB110023)
the School Foundation of Yangzhou University(2015CJX002)