期刊文献+

Gorenstein平坦(余挠)维数和Hopf作用(英文)

GORENSTEIN FLAT (COTORSION) DIMENSIONS AND HOPF ACTIONS
下载PDF
导出
摘要 设H是域k上的有限维Hopf代数,A是左H-模代数.本文研究了Gorenstein平坦(余挠)维数在A-模范畴和A#H-模范畴之间的关系.利用可分函子的性质,证明了(1)设A是右凝聚环,若A#H/A可分且φ:A→A#H是可裂的(A,A)-双模同态,则l.Gwd(A)=l.Gwd(A#H);(2)若A#H/A可分且φ:A→A#H是可裂的(A,A)-双模同态,则l.Gcd(A)=l.Gcd(A#H),推广了斜群环上的结果. In this paper, we study the relationship of Gorenstein flat(cotorsion) dimensions between A-Mod and A#H-Mod. Using the properties of separable functors, we get that(1) Let A be a right coherent ring, assume that A#H/A is separable and φ : A → A#H is a splitting monomorphism of(A, A)-bimodules, then l.Gwd(A) = l.Gwd(A#H);(2) Assume that A#H/A is separable and φ : A → A#H is a splitting monomorphism of(A, A)-bimodules, then l.Gcd(A) =l.Gcd(A#H), which generalized the results in skew group rings.
作者 孟凡云 MENG Fan-yun(School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, Chin)
出处 《数学杂志》 北大核心 2017年第1期83-90,共8页 Journal of Mathematics
基金 Supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province(15KJB110023) the School Foundation of Yangzhou University(2015CJX002)
关键词 凝聚环 GORENSTEIN平坦模 Gorenstein余挠模 coherent ring Gorenstein flat module Gorenstein cotorsion module
  • 相关文献

参考文献2

二级参考文献23

  • 1Chang Chang XI.Adjoint Functors and Representation Dimensions[J].Acta Mathematica Sinica,English Series,2006,22(2):625-640. 被引量:2
  • 2Asensio M J,Lopez Ramos J A,Torrecillas B.Gorenstein gr-injective and gr-projective modules[J].Comm.Algebra,1998,26:225-240.
  • 3Asensio M J,Lopez Ramos J A,Torrecillas B.Gorenstein gr-flat modules[J].Comm.Algebra,1998,26:3195-3209.
  • 4Asensio M J,Lopez Ramos J A,Torrecillas B.Covers and Envelopes over gr-Gorenstein Rings[J].J.Algebra,1999,215:437-459.
  • 5Auslander M,Reiten I,Smalo S 0.Representation theory of Artin algebras[M].Cambridge Stud.Adv.Math.Vol.36,Cambridge:Cambridge University Press,1997.
  • 6Cohen M,Montergomer S.Group-graded rings,smash products and group actions[J].Trans.Am.Math.Soc.,1984,282(1):237-258.
  • 7Dade E.Group graded rings and modules[J].Math.Z.,1980,174(2):241-262.
  • 8Enochs E E,Jenda O M G.Gorenstein injective and projective modules[J].Math.Z.,1995,220(4):611-633.
  • 9Enochs E E,Jenda O M G,Torrecillas B.Gorenstein flat modules[J].J.Nanjing Univ Math Bi- quarterly,1993,10(1):1-9.
  • 10Enochs E E,Oyonarte L.Covers,envelopes and cotorsion theories[M].New York:Nova Science Publishers Inc.,2002.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部