期刊文献+

具有非线性范数型源的反应扩散方程组解的爆破性质 被引量:2

BLOW-UP PROPERTIES FOR A REACTION-DIFFUSION SYSTEM WITH NONLINEAR NORM-TYPE SOURCES
下载PDF
导出
摘要 本文研究了一类带有非线性范数型源的反应扩散方程组u_t=?u^m+a‖u^(p1)v^(q1)‖_α^(r1),v_t=?v^n+b‖v^(p2)w^(q2)‖_β^(r2),w_t=?w^h+c‖w^(p3)u^(q3)‖_γ^(r3)在齐次Dirichlet边界条件下解的爆破问题.利用上下解方法和构造辅助函数的技巧,得到了方程组解的整体存在与爆破的准则,将当前的一些研究结果推广到更复杂的情形. In this paper, we study the blow-up problems for a class of reaction-diffusion system with nonlinear norm-type sources:ut=△um+a‖u(p1)v(q1)‖α(r1),vt=△vn+b‖v(p2)w(q2)‖β(r2),wt=△wh+c‖w(p3)u(q3)‖γ(r3) subject to homogeneous Dirichlet conditions. By using upper-lower solution method and constructing auxiliary functions' techniques, we obtain the criteria for global existence or finite time blow-up, which extend some results of the current research to more complex situations.
作者 钟光胜 田立新 ZHONG Guang-sheng TIAN Li-xin(School of Science, Nantong University, Nantong 226007, China Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013, China)
出处 《数学杂志》 北大核心 2017年第1期129-137,共9页 Journal of Mathematics
基金 国家自然科学基金资助(11171135 51276081) 江苏省自然科学基金资助(14KJA110001)
关键词 反应扩散方程组 范数型源 整体存在 爆破 reaction-diffusion system norm-type sources global existence blow up
  • 相关文献

参考文献3

二级参考文献25

  • 1LinZhigui LiuYurong.UNIFORM BLOWUP PROFILES FOR DIFFUSION EQUATIONS WITH NONLOCAL SOURCE AND NONLOCAL BOUNDARY1[J].Acta Mathematica Scientia,2004,24(3):443-450. 被引量:26
  • 2Chen H. Analysis of blow up for a nonlinear degenerate parabolic equation [J]. J. Math. Anal. Appl.,1995,192: 180-193.
  • 3Friedman A,Mcleod J B. Blow up of solutions of nonlinear degenerate parabolic equations [J]. Arch.Rational Mech. Anal., 1986, 96: 55-80.
  • 4Wang S, Wang M, Xie C. A nonlinear degenerate diffusion equation not in divergence form [J]. Z.Angew. Math. Phys., 2000, 51: 149-159.
  • 5Duan Z, Zhou L. Global and blow up solutions for nonlinear degenerate parabolic systems withcross-wise diffusion [J]. J. Math. Anal. Appl., 2000,244: 263-278.
  • 6Li Y, Deng W, Xie C, Global existence and nonexistence for degenerate parabolic systems [J]. Proc.Amer. Math. Soc., 2002, 130: 3661-3670.
  • 7Wang M, Xie C. A degenerate and strongly coupled quasilinear parabolic system not in divergenceform [J]. Z. Angew. Math. Phys., 2004, 55: 741-755.
  • 8Chen S. Global exisyence and nonexistence for some degenerate and quasilinear parabolic systems[J]. J. Differential Equations, 2008, 245: 1112-1136.
  • 9Levine H A. The role of critical exponents in blow up theorems [J]. SIAM Rev., 1990, 32: 262-288.
  • 10Wang M. Some degenerate and quasilinear parabolic systems not in divergence form [J]. J. Math.Anal. Appl., 2002, 274: 424-436.

共引文献17

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部