摘要
本文研究了具有随机扰动的统一混沌系统的有限时间同步问题,其中随机扰动是一维标准的维纳随机过程.利用了有限时间随机李雅普诺夫稳定性理论、伊藤公式,本文分三个步骤设立了三个控制器获得了驱动–响应系统在有限时间内的均方渐近同步.最后进行的数值模拟验证了理论结果的正确性和方法的有效性.
In this paper, finite-time synchronization of the unified chaotic system with stochastic perturbation is investigated, in which the perturbation is a Wiener process of onedimensional standards. Based on finite-time stochastic Lyapunov stability theory and Ito formula,three steps are presented to consecutively design three controllers to guarantee the finite-time mean-square asymptotical synchronization of the drive-response systems. Finally, numerical simulations are provided to illustrate the correctness and effectiveness of the theoretical results.
作者
王娇
涂俐兰
朱泽飞
WANG Jiao TU Li-lan ZHU Ze-fei(Hubei Province Key Laboratory of Systems Science in Metallurgical Process Wuhan University of Science and Technology, Wuhan 430065, Chin)
出处
《数学杂志》
北大核心
2017年第1期193-200,共8页
Journal of Mathematics
基金
冶金工业过程系统科学湖北省重点实验室开放基金资助(Y201412)
湖北省自然科学基金资助(22013CFA131)
关键词
随机扰动
统一混沌系统
有限时间同步
伊藤公式
李雅普诺夫稳定性理论
stochastic perturbation
unified chaotic system
finite-time synchronization
Ito formula
Lyapunov stability theory