期刊文献+

BZCY-(Li/Na)2CO3新型复合电解质的性能 被引量:2

Properties of Novel BZCY-(Li/Na)_2CO_3 Composite Electrolytes for LT-SOFC
原文传递
导出
摘要 采用均相共沉淀法合成Ba Zr_(0.1)Ce_(0.7)Y_(0.2)O_(2.9)(BZCY)粉体,并与碳酸盐复合制备不同配比的BZCY-(Li/Na)_2CO_3复合电解质。通过XRD、SEM、TG-DTA等分析方法对复合电解质粉末的结构与性能进行初步研究。结果表明,复合电解质中碳酸盐以无定形形态存在,BZCY与碳酸盐发生反应生成Ba CO_3杂相;复合电解质电导率在空气中600和450℃时分别可达0.095和0.071 S·cm^(-1),在加湿氢气中分别可达0.126和0.075 S·cm^(-1),复合电解质在空气中600℃时,400 h内长期电导率基本稳定在0.08~0.09 S·cm^(-1)。以BZCY-20%(Li/Na)_2CO_3为复合电解质的单电池表现出良好输出性能,在600和500℃时输出功率密度可达741和258 m W·cm^(-2)。600℃时0.6 A·cm^(-2)恒流放电,90 min内电池输出性能基本维持在300 m W·cm^(-2)以上。 BaZr_(0.1)Ce_(0.7)Y_(0.2)O_(2.9)(BZCY) powder was synthesized by a homogeneous coprecipitation method, and the powder was mixed with carbonate to prepare the compound with different ratios of(Li/Na)_2CO_3. The structure and electrical properties of the composite electrolytes were characterized by SEM, XRD and TG-DTA. The results show that the carbonate in the amorphous form exists in the composite electrolytes, which reacts with BZCY to form Ba CO_3. The conductivities of the composite electrolytes reach 0.095 S·cm^-1 at 600 °C and 0.071 S·cm^-1 at 450 °C in air, while 0.126S·cm^-1 at 600 °C and 0.075 S·cm^-1 at 450 °C in humidified hydrogen. The conductivity of the composite electrolytes is basically stable for a long time in 0.08~0.09S·cm^-1 within 400 h at 600 °C. The single cell prepared with BZCY-20%(Li/Na)_2CO_3 composite electrolytes shows good output performance. The maximum power densities reach 741 m W·cm^-2 at 600 °C and 258 m W·cm^-2 at 500 °C. When discharging with 0.6 A·cm^-2 at 600 °C, the output performance is basically kept above 300 m W·cm^-2 within 90 min.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2017年第1期231-236,共6页 Rare Metal Materials and Engineering
基金 国家自然科学基金(U1462112,21573122) 国际合作项目(2013DFG41460,2013DFG60080)
关键词 低温固体氧化物燃料电池 BZCY-(Li/Na)2CO3复合电解质 稳定性 LT-SOFC BaZr0.1Ce0.7Y0.2O2.9-(Li/Na)2CO3 composite electrolytes stability
  • 相关文献

参考文献2

二级参考文献31

  • 1Baur E, Preis H. Uèber brennstoff-ketten mit festlei-tern. Z Elektrochem, 1937, 43: 727-732.
  • 2Surdoval W A. SOFC development in the USA. In: Steinberger-Wilckens R, Bossel U, eds. Proceedings of the 8th European Solid Oxide Fuel Cell Forum. Lucerne, Switzerland, 2008. B0106.
  • 3Vora S D. Recent developments in the SECA program. In: Singhal S, Eguchi K, eds. Solid Oxide Fuel Cells 12 (SOFC XII). Pennington: Electrochemical Society Inc., 2011. 35: 3-9.
  • 4Hosoi K, Ito M, Fukae M. Status of national project for SOFC development in Japan. In: Singhal S, Eguchi K, eds. Solid Oxide Fuel Cells 12 (SOFC XII). Pennington: Electrochemical Society Inc., 2011. 35: 11-18.
  • 5Rietveld B. SOFC development in Europe. In: Steinberger-Wilckens R, Bossel U, eds. Proceedings of the 8th European Solid Oxide Fuel Cell Forum. Lucerne, Switzerland, 2008. B0105.
  • 6Steinberger-Wilckens R. European SOFC technology-status and trends. In: Singhal S, Eguchi K, eds. Solid Oxide Fuel Cells 12 (SOFC XII). Pennington: Electrochemical Society Inc., 2011. 35: 19-29.
  • 7Borglum B. Development of solid oxide fuel cells at versa power systems. In: Steinberger-Wilckens R, Bossel U, eds. Proceedings of the 8th European Solid Oxide Fuel Cell Forum. Lucerne, Switzerland, 2008. B0303.
  • 8Foeger K. SOFC micro-CHP of ceramic fuel cell Ltd-products for today. In: Steinberger-Wilckens R, Bossel U, eds. Proceedings of the 8th European Solid Oxide Fuel Cell Forum. Lucerne, Switzerland, 2008. B0202.
  • 9Minh N Q. Ceramic fuel cells. J Am Ceram Soc, 1993, 76: 563-588.
  • 10Singhal S C, Kendall K. 韩敏芳, 蒋先锋, 译. 高温固体氧化物燃料电池——原理、设计和应用. 北京: 科学出版社, 2007. 309-331.

共引文献15

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部