期刊文献+

长链非编码RNA在哺乳动物精子发生中的功能研究进展 被引量:2

Progresses of Research on the Function of LncRNA Involved in Mammalian Spermatogenesis
下载PDF
导出
摘要 长链非编码RNA(lncRNA)一般是指大于200 nt的RNA,位于细胞核内或胞浆中,不参与蛋白质编码,以RNA形式在表观遗传调控、转录调控以及转录后调控等多个层面上调控基因的表达水平。哺乳动物精子发生是一个精细调控的过程,通过雄性生殖细胞分裂和分化形成成熟精子,且精子发生受到不同阶段特异性基因表达的严格调控,而特异性基因表达又受到大量lncRNAs的调控。虽然lncRNA作为一类重要的基因表达调控因子广泛参与各类生物个体发育进程和疾病的发生,但是精子发生相关lncRNAs的报道并不多,且其生物学功能的研究有待进一步深入。因此,本文对lncRNA的起源、作用机制和在精子发生过程中调控作用的研究进展进行了总结分析。 Long non-coding RNA( lnc RNA) is the functional RNA segment longer than 200 nucleotides,locating in the nucleus or the cytoplasm,with little or no protein-coding capacity. Lnc RNAs can regulate gene expression at epigenetic,transcription and post-transcription level. Spermatogenesis is a well-orchestrated biological process,which is composed of meiotic division of spermatocytes and post-meiotic differentiation of haploid spermatids into mature spermatozoa. This process is strictly modulated by phase-specific gene expression under the regulation of plenty of lnc RNAs. Although lnc RNAs widely participate in various physiological and pathological processes as a new class of important regulatory factors,yet little information is available in the process of spermatogenesis. The identification of spermatogenesis-related lnc RNAs and their biological function research are still remaining unknown. Therefore,this article summarized the recent research progresses on the origin and function mechanism of lnc RNAs as well as their regulatory roles in spermatogenesis.
出处 《四川动物》 北大核心 2017年第1期114-120,共7页 Sichuan Journal of Zoology
基金 国家自然科学基金项目(31572396)
关键词 lncRNA 起源 作用模式 哺乳动物 精子发生 lnc RNA origin mechanism mammal spermatogenesis
  • 相关文献

参考文献2

二级参考文献41

  • 1Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447(7146): 799-16.
  • 2Bertone P, Stoic V, Royce TE, et al. Global identification of human transcribed sequences with genome tiling arrays. Science, 2004, 306(5705): 2242-6.
  • 3Kampa D, Cheng J, Kapranov P, et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res, 2004, 14(3): 331-42.
  • 4Tian B, Hu J, Zhang H, et al. A large-scale analysis ofmRNA polyadenylation of human and mouse genes. Nucleic Acids Res, 2005, 33(1): 201-12.
  • 5Duret L, Chureau C, Samain S, et al. The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science, 2006, 312(5780): 1653-5.
  • 6Hutchinson JN, Ensminger AW, Clemson CM, et al. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics, 2007, 8:39.
  • 7Conley AB, Miller WJ, Jordan IK. Human cis natural antisense transcripts initiated by transposable elements. Trends Genet, 2008, 24(2): 53-6.
  • 8Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet, 2006, 22(1): 1-5.
  • 9Pollard KS, Salama SR, King B, et al. Forces shaping the fastest evolving regions in the human genome. PLoS Genet, 2006, 2(10): e168.
  • 10Goodrich Jm, Kugel JF. Non-coding-RNA regulators of RNA polymerase II transcription. Nat Rev Mol Cell Biol, 2006, 7 (8): 612-6.

共引文献14

同被引文献17

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部