摘要
提出了一个求解线性规划的不可行内点算法.该算法的特点是:一方面使用了宽邻域,因此数值实验表明具有较好的计算效果;另一方面,通过分析获得它的多项式复杂度为O(n^(1.5)L),这是宽邻域不可行内点算法的最好复杂度.
In this paper,we propose a wide neighborhood infeasible-interior-point method for linear programming.The characteristics of the proposed algorithm are as follows:on the one hand,the proposed algorithm is based on a wide neighborhood and has a good calculation results,which is showed by the experiments.On the other hand,by analyzing,we achieve the iteration complexity O(n(1.5)L) for the proposed algorithm,which is the best complexity result for a wide neighborhood infeasible-interior-point method.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第1期92-98,共7页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金项目(61179040
11501180)
中国博士后基金项目(2016M590346)
河南师范大学博士启动基金项目(qd14150)
河南师范大学青年基金(2014QK03)
关键词
线性规划
不可行内点算法
宽邻域
多项式复杂度
linear programming
infeasible-interior-point method
wide neighborhood
polynomial complexity