期刊文献+

基于改进动态神经网络的精馏塔温度控制 被引量:2

Temperature Control of Distillation Tower Based on Improved Dynamic Neural Network
下载PDF
导出
摘要 精馏过程是一种具有多变量、强耦合、时变非线性特性的复杂工业生产过程。为实现对其温度的精确控制,首先通过对高阶耦合系统分析提出一种改进型动态神经网络;然后利用改进的动态神经网络建立精馏塔的模型并设计解耦器对精馏塔进行解耦;最后针对解耦后的每个SISO系统分别采用参数可在线调整的PID控制器进行控制。由于其时变特性,同时为避免反传算法和其他智能优化算法收敛慢、易陷入局部极值的缺点,对粒子群算法(PSO)进行改进,用改进的粒子群算法(PSO)训练神经网络并优化PID控制器的参数。经过仿真实验验证了所提出控制策略的有效性和可行性。 Distillation is a multivariable, strong coupling, time-varying and nonlinear industrial production process. In order to achieve precise control of its temperature, firstly, through the analysis an improved dynamic neural network is provided. Secondly, the improved dynamic neural network is used to identify the modol of the distillation tower and the decoupler is designed. Finally, a PID controller is adopted which can be adjusted online to control eatch SISO channel. Due to its timevarying characteristics, and it avoids the disadvantage that converges slowly and easy to fall into local minimum of the basic PSO algorithm, an improved PSO algorithms is proposed and uses for training the neural network and optimizing the parameters of the PID controller. The simulation shows the effectiveness and feasibility of the proposed control strategy.
出处 《自动化技术与应用》 2017年第1期25-31,共7页 Techniques of Automation and Applications
基金 国家自然科学基金(编号61203021)
关键词 精馏塔温度控制 粒子群算法 动态神经网络 解耦控制 distillation tower temperature control particle swarm optimization dynamic neural network decoupling control
  • 相关文献

参考文献4

二级参考文献49

  • 1谭皓,沈春林,李锦.混合粒子群算法在高维复杂函数寻优中的应用[J].系统工程与电子技术,2005,27(8):1471-1474. 被引量:13
  • 2高鹰,姚振坚,谢胜利.基于种群密度的粒子群优化算法[J].系统工程与电子技术,2006,28(6):922-924. 被引量:7
  • 3Kennedy J,Eberhart R.Particle swarm optimization[C] //Proc.of IEEE International Conference on Neural Networks,1995:1942-1948.
  • 4Nakagawa N,Ishigame A,Yasuda K.Particle swarm optimization with velocity control[J].IEEE Trans.on Electrical and Electronic Engineering,2009,4(1):130-132.
  • 5Shi Y,Eberhart R C.Fuzzy Adaptive particle swarm optimization[C] //Proc.of IEEE International Congress on Evolutionary Computation,2001:101-106.
  • 6Li J,Xiao X P.Multi-swarm and multi-best particle swarm optimization algorithm[C] //Proc.of 7th World Congress on Intelligent Control and Automation,2008:6281-6286.
  • 7Coello C A,Pulido G T,Lechuga M S.Handling multiple objectives with particle swarm optimization[J].IEEE Trans.on Evolutionary Computation,2004,8(3):256-279.
  • 8Cai T,Pan F,Chen J.Adaptive particle swarm optimization algorithm[C] //Proc.of Fifth World Congress on Intelligent Control and Automation,2004:2245-2247.
  • 9Elshamy W,Emara H M,Bahgat A.Clubs-based particle swarm optimization[C] //Proc.of IEEE Swarm Intelligence Symposium,2007:289-296.
  • 10Janson S,Middendorf M.A hierarchical particle swarm optimizer[C] //Proc.of the Congress on Evolutionary Computation,2003:770-776.

共引文献52

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部