期刊文献+

Global Cauchy Problem for a Leray-α Model

Global Cauchy Problem for a Leray-α Model
原文传递
导出
摘要 In this paper, we consider the Cauchy problem for the 3D Leray-α model, introduced by Cheskidov et al.[11]. We obtain the global solution for the 3D Leray-α model in the fractional index Sobolev space, and prove that the 3D Leray-α model reduces to the homogeneous incompressible Navier-Stokes equations as α↓0+, and the solution of the 3D Leray-α model will converge to the weak solution of the corresponding Navier-Stokes equations. In this paper, we consider the Cauchy problem for the 3D Leray-α model, introduced by Cheskidov et al.[11]. We obtain the global solution for the 3D Leray-α model in the fractional index Sobolev space, and prove that the 3D Leray-α model reduces to the homogeneous incompressible Navier-Stokes equations as α↓0+, and the solution of the 3D Leray-α model will converge to the weak solution of the corresponding Navier-Stokes equations.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2017年第1期207-220,共14页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(Grant No.11126266,11471126 and 11431015) the Natural Science Foundation of Guang Dong Province(Grant No.2016A030313390) the China 973Program(Grant No.2011CB808002)
关键词 Leray-α model Cauchy problem Littlewood-Paley decomposition global well-posedness Leray-α model Cauchy problem Littlewood-Paley decomposition global well-posedness
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部