期刊文献+

Curvature identities on almost Hermitian manifolds and applications 被引量:1

Curvature identities on almost Hermitian manifolds and applications
原文传递
导出
摘要 We systematically derive the Bianchi identities for the canonical connection on an almost Hermitian manifold.Moreover,we also compute the curvature tensor of the Levi-Civita connection on almost Hermitian manifolds in terms of curvature and torsion of the canonical connection.As applications of the curvature identities,we obtain some results about the integrability of quasi K¨ahler manifolds and nearly K¨ahler manifolds. We systematically derive the Bianchi identities for the canonical connection on an almost Hermitian manifold. Moreover, we also compute the curvature tensor of the Levi-Civita connection on almost Hermitian manifolds in terms of curvature and torsion of the canonical connection. As applications of the curvature identities, we obtain some results about the integrability of quasi Kahler manifolds and nearly Kahler manifolds.
作者 YU ChengJie
出处 《Science China Mathematics》 SCIE CSCD 2017年第2期285-300,共16页 中国科学:数学(英文版)
基金 supported by Science Foundation of Guangdong Province (Grant No. S2012010010038) National Natural Science Foundation of China (Grant No. 11571215) supporting project from the Department of Education of Guangdong Province (Grant No. Yq2013073)
关键词 almost Hermitian manifold canonical connection INTEGRABILITY Hermitian流形 曲率张量 应用 Kahler流形 恒等式 可积性 连接 联络
  • 相关文献

参考文献1

二级参考文献12

  • 1Chern, S.-S.: Characteristic classes of Hermitian manifolds. Ann. of Math. (2), 47(1), 85 121 (1946).
  • 2Ehresmann, C., Libermann, P.: Sur les structures presque hermitiennes isotropes. C. R. Acad. Sci. Paris, 232, 1281-1283 (1951).
  • 3Fan, X. Q., Tam, L. F., Yu, C. J.: Product of almost Hermitian manifolds. J. Geom. Anal., 24, 1425 1446 (2014).
  • 4Gauduchon, P.: Hermitian connections and Dirac operators. Boll. Unione Mat. Ital. B, 11(2), suppl. 257-288 (1997).
  • 5Kobayashi, S.: Almost complex manifolds and hyperbolicity. Results Math., 40(1-4), 246-256 (2001).
  • 6Kobayashi, S.: Natural connections in almost complex manifolds, Explorations in complex and Riemannian geometry, 153-169, Contemp. Math., 332, Amer. Math. Soc., Providence, RI, 2003.
  • 7Morrow, J., Kodaira, K.: Complex Manifolds, Reprint of the 1971 edition with errata. AMS Chelsea Publishing, Providence, RI, 2006, x+194 pp.
  • 8Vezzoni, L.: A generalization of the normal bolomorphic frames in symplectic manifolds. Boll. Unione Mat. Ital. Sez. B Attic. Ric. Mat., 9(3), 723 732 (2006).
  • 9Wells, R. O.: Differential Analysis on Complex Manifolds, Second edition, Graduate Texts in Mathematics, 65, Springer-Verlag, New York-Berlin, 1980, x+260 pp.
  • 10Yu, C. J.: Nonpositively curved Hermitian metrics on product manifolds. Proc. Amer. Math. Soc., 139(4), 1469 1472 (2011).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部