期刊文献+

Towards a more flexible representation of water stress effects in the nonlinear Jarvis model 被引量:2

Towards a more flexible representation of water stress effects in the nonlinear Jarvis model
下载PDF
导出
摘要 To better interpret summer maize stomatal conductance (gs) variation under conditions of changing water status at different growth stages, three water stress indicators, soil water content (SWC), leaf-air temperature difference (AT) and leaf level water stress index (CWSIL) were employed in Jarvis model, which were Js, JT and Jc models respectively. Measurements of gs were conducted in a summer maize field experiment during the year 2012-2013. In the insufficient irrigation exper- iment, three levels of irrigation amount were applied at four different growth stages of summer maize. We constructed three scenarios to evaluate the performance of the three water stress indicators for estimating maize gs in a modified Jarvis model. Results showed that JT and Jc models had better simulation accuracy than the Js model, especially at the late growth stage (Scenario 1) or considering the plant recovery compensation effects (Scenario 2). Scenario 3 indicated that the more environmental factors were adopted, the better prediction performance would be for Js model. While for JT model, two environmental factors (photosynthesis active radiation (PAR), and vapor pressure deficit (VPD)) seemed good enough to obtain a reliable simulation. When there were insufficient environmental data, CWSI, would be the best option. This study can be useful to understand the response of plant stomatal to changing water conditions and will further facilitate the application of the Jarvis model in various environments. To better interpret summer maize stomatal conductance (gs) variation under conditions of changing water status at different growth stages, three water stress indicators, soil water content (SWC), leaf-air temperature difference (AT) and leaf level water stress index (CWSIL) were employed in Jarvis model, which were Js, JT and Jc models respectively. Measurements of gs were conducted in a summer maize field experiment during the year 2012-2013. In the insufficient irrigation exper- iment, three levels of irrigation amount were applied at four different growth stages of summer maize. We constructed three scenarios to evaluate the performance of the three water stress indicators for estimating maize gs in a modified Jarvis model. Results showed that JT and Jc models had better simulation accuracy than the Js model, especially at the late growth stage (Scenario 1) or considering the plant recovery compensation effects (Scenario 2). Scenario 3 indicated that the more environmental factors were adopted, the better prediction performance would be for Js model. While for JT model, two environmental factors (photosynthesis active radiation (PAR), and vapor pressure deficit (VPD)) seemed good enough to obtain a reliable simulation. When there were insufficient environmental data, CWSI, would be the best option. This study can be useful to understand the response of plant stomatal to changing water conditions and will further facilitate the application of the Jarvis model in various environments.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第1期210-220,共11页 农业科学学报(英文版)
基金 supported by the Programme of Introducing Talents of Discipline to Universities,China(B12007) the National Natural Science Foundation of China(51179162) the National Key Technoloies R&D Program of China during the 12th Five-Years Plan period(2011BAD29B01)
关键词 summer maize stomatal conductance water status recovery compensation water stress indicators Jarvis model summer maize stomatal conductance water status recovery compensation water stress indicators Jarvis model
  • 相关文献

参考文献13

二级参考文献277

共引文献363

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部