摘要
运用单调迭代法和Schauder不动点定理,研究了四阶两点边值问题{y^(4)(t)=λa(t)f(y(t)),t∈(0,1),y(0)=y(1)=y′(0)=y′(1)=0,正解的存在性,其中a∈L^1(0,1),f∈C([0,+∞),[0,+∞)),λ>0是参数.
In this paper,by using monotone iterative technique and the Schauder's fixed-point theorem,we obtained the existence of positive solution for fourth-order problem with two-point boundary value{y^(4)(t)=λa(t)f(y(t)),t∈(0,1)y(0)=y(1)=y′(0)=y′(1)=0where a∈L^1(0,1),f∈C()[0,+∞),[0,+∞)),λ0is parameter.
作者
苗亮英
何志乾
MIAO Liang-ying HE Zhi-qian(College of Mathematics and Statistics, Qinghai Nationalities University, Xining 810007, China Teaching and Research Department of Basic Courses, Qinghai University, Xining 810016,China)
出处
《兰州文理学院学报(自然科学版)》
2017年第1期1-3,共3页
Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金
青海大学2015年度中青年基金(2015-QGY-12)
关键词
正周期解
微分系统
存在性
positive solution
boundary value problems
existence