期刊文献+

二维光滑边域有限元法在弹性力学中的应用研究 被引量:5

An Edge-Based Smoothed Finite Element Method for 2D Mechanics Problems
下载PDF
导出
摘要 在深入理解光滑有限元法基本理论的基础上,重点研究了光滑边域有限元法边域的形成方式,光滑应变矩阵的求解方法以及光滑有限元形函数的计算方法。利用C++语言编制了光滑边域有限元计算程序,针对具有解析解的二维悬臂梁模型和带孔板模型计算了位移场、应力场、位移误差和应变能误差,并与常规T3和Q4有限元法、CS-FEM光滑有限元解比较。通过研究发现相对于常规有限元法,光滑边域有限元法在解的精确性和收敛性方面具有显著优势。 We focus on the formation of the edge-based smoothed cells and the formulation of smoothed strain matrix and shape functions based on the deep understanding of theoretical aspects of the smoothed finite element method. The computational program of the edge-based smoothed finite element method (ES-FEM) which is made by C + + language is used to solve 2D elastic problems which are so-called cantilever beam and infinite plate with a circular hole in this work. The displacement field, strain/stress field and errors of displacement and strain energy are calcu- lated. The results of ES-FEM will be compared with those of the standard FEM using triangular and quadrilateral el- ements (FEM-T3, FEM-Q4), cell-based smoothed finite element method (CS-FEM), as well as the analytical solutions. It shows that the ES-FEM achieves more accurate with original FEM. results and generally higher convergence rate compared
作者 谢伟 贺旭东 吴建国 刘轶军 Xie Wei He Xudong Wu Jianguo Liu Yijun(School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China Science and Technology on Reliability and Environment Engineering Laboratory,Beijing Institute of Structure and Environment Engineering, Beijing 100076, China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2017年第1期7-12,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(11672238 11472218) 中国航天科技集团公司航天科技创新基金资助
关键词 弹性力学 光滑有限元法 光滑边域有限元法 C++ 应用 应变能 mechanics, smoothed finite element method, edge-based smoothed finite element method, C++, appli-cation, strain energy
  • 相关文献

参考文献1

二级参考文献11

  • 1G. R. Liu,K. Y. Dai,T. T. Nguyen.A Smoothed Finite Element Method for Mechanics Problems[J].Computational Mechanics.2007(6)
  • 2Ashwell D G.Strain elements, with applications to arches, rings and cylindrical shells[].Finite Elements for Thin Shells and Curved Mem- bers.1976
  • 3Ansel C U.Stresses in Plates and Shells[]..1999
  • 4Kwon Y W,Bang H.The Finite Element Method Using Matlab[]..2000
  • 5Commend S,Truty A,Zimmermann T.Stabilized finite elements applied to elastoplasticity: I Mixed displace- ment-pressure formulation[].Computer Methods in Applied Mechanics and Engineering.2004
  • 6Zienkiewicz O C,Taylor R L.The Finite Element Method[]..2000
  • 7Liu G R,Quek S S.The Finite Element Method: A Practi- cal Course[]..2003
  • 8Bathe K J.Finite Element Procedures[]..1996
  • 9Liu G R,Nguyen T T,Dai K Y,Lam K Y.Theoretical as- pects of the smoothed finite element method (SFEM)[].In- ternational Journal for Numerical Methods in Engineering.2006
  • 10Liu G R,Dai K Y,Nguyen T T.A smoothed finite element method for mechanics problems[].Computational Mecha- nics.2007

共引文献3

同被引文献21

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部