期刊文献+

随机扰动神经网络的脉冲控制 被引量:2

Impulsive Control of Neural Networks with Random Disturbance
原文传递
导出
摘要 脉冲控制具有响应速度快,鲁棒性和抗干扰能力好的特点,被广泛应用于参数随机扰动的动力学系统的控制.本文研究一类参数随机扰动的变时滞细胞神经网络在脉冲控制下的全局指数稳定性问题.利用Ly印unov稳定性理论和离散Halanay不等式技术手段,分别给出在脉冲控制下,参数随机扰动和无参数扰动的变时滞细胞神经网络全局指数稳定的充分条件.最后,通过数值算例说明所得结果. Impulsive control has been used extensively in the control of the dynamic systems with random disturbance for their rapid responses, strong robustness and anti- disturbances. This paper investigates global exponential stability problems of a class cellular neural networks with time-varying delays and random disturbance. By means of the Lyapunov stability theory and discrete-time Halanay inequality technique, sufficient conditions for their global exponential stability of cellular neural networks with time-varying delays are derived under impulsive control, including the cases that the parameter is random disturbance and non-disturbance, respectively. Finally, numerical examples are presented to illustrate the obtained results.
作者 陈远强 CHEN YUANQIANG(College, Guizhou Minzu University, Guiyang 550025, Chin)
出处 《应用数学学报》 CSCD 北大核心 2017年第1期16-26,共11页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11171079) 贵州省科学技术基金([2014]2089) 贵州省数学建模及其应用创新人才团队([2013]405)资助项目
关键词 细胞神经网络 脉冲控制 指数稳定性 Halanay不等式 cellular neural networks impulsive control exponential stability Halanay inequality
  • 相关文献

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部