摘要
本文研究一类含有最大值项的二元时滞非线性积分不等式,放弃对函数的单调性和可分离性要求.通过对不等式中的函数的单调化,给出了未知函数解的估计,在较弱的条件下推广了一些已有的结果,进而将所得的结果应用到研究含有最大值项的偏微分方程解的有界性.
In this paper we establish a generalized retarded nonlinear integral inequalities with maxima in two variables and more than one distinct nonlinear term. Requiring neither monotonicity nor separability of given functions, we apply monotonization to estimate the unknown function. Our result can be used to weaken conditions for some known results. We apply our result to prove boundedness of the solutions of certain partial differential equations with the maxima.
作者
严勇
YAN YONG(Department of Mathematics, Sichuan Minzu College, Kangding 626001, China)
出处
《应用数学学报》
CSCD
北大核心
2017年第1期85-98,共14页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(11461058)
四川教育厅重点(14ZA0296
11ZA180)资助项目