期刊文献+

多样性感知的时空文本信息的KNN查询处理方法 被引量:9

Diversity-Aware KNN Query Processing Approaches for Temporal Spatial Textual Content
下载PDF
导出
摘要 如何在互联网上大量的带有地理位置标签和时间标签的信息中查找满足用户需求的信息十分重要.文中针对带有地理位置和时间标签的文本信息,提出多样性感知的时空文本信息的k近邻查询处理方法.首先,归一化处理数据对象的时空变量,并建立三维Rtree索引,有效融合数据对象的时间变量和空间变量.然后,提出多样性感知的k近邻查询算法(DST-KNN)和改进的DST-KNN(IDST-KNN).最后,通过基于大量数据集的实验验证文中查询处理方法的高效性和准确性. It is very important to find textual contents satisfying user's demand among a mount of textual contents with location and time tags generated on web. Firstly, location variables and time variables of data objects are normalized, and a three-dimensional Rtree index combining location variables and time variables is designed. Then, a DST-KNN query algorithm and an improved diversity-aware KNN query algorithm called IDST-KNN query algorithm are proposed. Finally, experiments on massive datasets illustrate that the query processing approaches are efficient and accurate.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2017年第1期64-72,共9页 Pattern Recognition and Artificial Intelligence
基金 国家重点基础研究发展规划(973项目)(No.2012CB316201) 国家自然科学基金项目(No.61472070)资助~~
关键词 时空文本信息 K近邻查询 多样性 Temporal Spatial Textual Content, k Nearest Neighbor Query, Diversity
  • 相关文献

参考文献1

二级参考文献103

  • 1潘晓,肖珍,孟小峰.位置隐私研究综述[J].计算机科学与探索,2007,1(3):268-281. 被引量:65
  • 2Yang B, Lu H, Jensen C S. Scalable continuous range monitoring of moving objects in symbolic indoor space//Proeeedings of the 18th ACM Conference on Information and Knowledge Management. Hong Kong, China, 2009:671-680.
  • 3Wolfson O, Sistla P A, Chamberlain S, Yesha Y. Updating and querying databases that track mobile units. Distributed and Parallel Databases, 1999, 7(3): 257-387.
  • 4Pfoser D, Jensen C S. Capturing the uncertainty of movingobjects representations//Proceedings of the 6th International Symposium on Advances in Spatial Databases. Hong Kong, China, 1999:111-132.
  • 5Cheng R: Kalashnikov D V, Prabhakar S. Querying imprecise data in moving object environments. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(9): 1112- 1127.
  • 6Zhang M, Chen S, Jensen C S, Ooi B C, Zhang Z. Effectively indexing uncertain moving objects for predictive queries// Proceedings of the VLDB Endowment. Lyon, 2009, 2 (1): 1198-1209.
  • 7Cheng R, Chen L, Chen J, Xie X. Evaluating probability threshold k-nearest-neighbor queries over uncertain data// Proceedings of the 12th International Con/erence on Extending Database Technology. Saint Petersburg, 2009 :672-683.
  • 8Tao Y, Cheng R, Xiao X, Ngai W K, Kao B, Prabhakar S. Indexing multi-dimensional uncertain data with arbitrary probability density funetions//Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim, 2005 : 922-933.
  • 9Kalashnikov D V, Ma Y, Mehrotra S, Hariharan R. Index for fast retrieval of uncertain spatial point data//Proceedings of the 14th ACM International Symposium on Geographic Information Systems. Arlington, 2006:195-202.
  • 10Chen J, Cheng R. Efficient evaluation of imprecise location- dependent queries//Proceedings of the 23rd International Conference on Data Engineering. Istanbul, 2007:586-595.

共引文献170

同被引文献64

引证文献9

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部