期刊文献+

基于分布式压缩感知的联合检测与跟踪算法 被引量:6

Algorithm for joint detection and tracking based on distributed compressed sensing
原文传递
导出
摘要 多基雷达系统对隐身目标的检测与跟踪具有良好的效果,但是在集中式融合框架下应用于多基雷达的检测与跟踪算法具有计算复杂、计算量大的缺点.对此,提出一种应用于多基雷达系统的基于分布式压缩感知的联合检测与跟踪算法.首先,应用分布式紧凑感知矩阵追踪算法直接重构出表征目标状态空间信息的稀疏网格反射向量;然后,应用检测前跟踪算法得到精确的目标运动状态和轨迹.仿真实验表明了所提出算法的有效性. Multi-static radar systems are capable of detecting and tracking stealthy targets. However, the state-of-theart detection and tracking algorithms in a centralized fusion framework suffers from high computational complexity.Therefore, an approach, namely distributed compressed sensing based joint detection and tracking, is proposed for the multi-static radar system, which reduces the computational load largely, in a centralized fusion framework. In the proposed approach, a distributed compact sensing matrix pursuit(DCSMP) algorithm is firstly adopted to reconstruct the sparse grid reflection vector by using distributed compressed sensing matrix pursuit algorithm. The outputs of the DCSMP algorithm are directly fed as instantaneous measurements to the track-before-detect(TBD) tracker, which removes the false measurements and correctly associates the target-generated measurements to the respective targets. Numerical experiments are given to illustrate the correctness of the proposed algorithm.
作者 刘静 盛明星 宋大伟 白彩娟 韩崇昭 LIU Jing SHENG Ming-xing SONG Da-wei BAI Cai-juan HAN Chong-zhao(School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China National Key Laboratory of Science and Technology on Space Microwave, Xi'an 710000, China)
出处 《控制与决策》 EI CSCD 北大核心 2017年第2期239-246,共8页 Control and Decision
基金 国家自然科学基金项目(61573276) 国家自然科学基金创新研究群体科学基金项目(61221063) 国家"973"计划项目(2013CB329405)
关键词 多基雷达系统 分布式压缩感知 分布式紧凑感知矩阵追踪算法 联合检测跟踪 multi-static radar system distributed compressed sensing distributed compact sensing matrix pursuit algorithm joint detection and tracking
  • 相关文献

参考文献3

二级参考文献29

  • 1沈艳,郭兵,古天祥.粒子群优化算法及其与遗传算法的比较[J].电子科技大学学报,2005,34(5):696-699. 被引量:90
  • 2Blackman S S, Popoli R F. Design and analysis of modern tracking system[M]. Norwood MA: Artech House, 1999.
  • 3Hashemipour H R, Roy S, Laub A J. Decentralized structures for parallel Kalman filtering[J]. IEEE Trans. on Automatic Control, 1988, 33(1): 88-93.
  • 4Gan Q, Harris C J. Comparison of two measurement fusion methods for kalman-filter-based multisensor data fusion[J]. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37(1): 273-280.
  • 5Roy S, Iltis R A. Decentralized linear estimation in correlated measurement noise[J]. IEEE Trans. on Aerospace and Electronic Systems, 1991, 27(6):939-941.
  • 6Fitzgerald R J. Analytic track solutions with range-dependent errors[J]. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36(1): 343-348.
  • 7Li X R. Optimal linear estimation fusion for multisensor dynamic systems[A]. Proceedings of Workshop on Multiple Hypothesis Tracking-A Tribute to Sam Blackman[C]. San Diego, CA, 2003.
  • 8Li X R, Zhu Yunmin, Wang Jie, et al. Optimal linear estimation fusion-Part I: unified fusion rules[J]. IEEE Trans. on Information Theory, 2003, 49(9): 2192-2208.
  • 9Jin Xuebo, Sun Youxian. Optimal centralized state fusion estimation for multi-sensor system with correlated measurement noise [A]. Proceedings of 2003 IEEE Conference on Control Applications[C], Istanbul, Turkey, 2003. 770 -772.
  • 10Salmond D, Birch H. A particle filter for track-before-detectEC3// Proc. of the American Control Conference, 2001 ..3755 - 3760.

共引文献21

同被引文献52

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部