摘要
针对非平稳时间序列预测问题,提出一种具有广义正则化与遗忘机制的在线贯序超限学习机算法.该算法以增量学习新样本的方式实现在线学习,以遗忘旧的失效样本的方式增强对非平稳系统的动态跟踪能力,并通过引入一种广义的l2正则化使其具有持续的正则化功能,从而保证算法的持续稳定性.仿真实例表明,所提出算法具有较同类算法更好的稳定性和更小的预测误差,适用于具有动态变化特性的非平稳时间序列在线建模与预测.
To solve the prediction problem of nonstationary time series, this paper proposes an online sequential extreme learning machine with forgetting and generalized regularization(OSELM-FGR). The proposed OSELM-FGR is able to learn the newly arrived samples incrementally by a recursive fashion, and has the improved ability to track the dynamic behavior of time-varying systems by forgetting the outdated samples in the learning process. Moreover, a generalized l2 regularization is introduced into the OSELM-FGR to make the proposed algorithm have a persistent stability. Detailed performance comparisons of the OSELM-FGR with its counterparts are carried out. The experimental results show that,the proposed OSELM-FGR has better performance in the sense of stability and prediction accuracy, which can be applied to the online modeling and prediction of nonstationary time series with dynamic changes.
作者
郭威
徐涛
汤克明
于建江
GUO Wei XU Tao TANG Ke-ming YU Jian-jiang(School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China School of Information Engineering, Yancheng Teachers University, Yancheng 224002, China)
出处
《控制与决策》
EI
CSCD
北大核心
2017年第2期247-254,共8页
Control and Decision
基金
国家自然科学基金项目(61603326,61379064,61273106)
国家科技支撑计划课题(2014BAJ04B02)
中央高校基本科研业务费专项资金项目(3122014D032)
中国民航信息技术科研基地开放课题(CAAC-ITRB-201401)
关键词
在线贯序超限学习机
广义正则化
遗忘因子
时间序列预测
online sequential extreme learning machine
generalized regularization
forgetting factor
time series prediction