期刊文献+

基于改进教学算法的车间作业调度问题 被引量:7

Improved teaching-learning-based optimization algorithm for solving job shop scheduling problem
原文传递
导出
摘要 为求解车间作业调度问题,提出一种基于个体差异化自学习的改进教学算法.针对教学算法局部搜索能力不高的缺陷,提出学生不仅应向能力好的学习者学习,亦应进行有差异的自我学习.通过学习者的完工时间评估学生的学习能力,提出学习次数概念,并设计自学习算子,完善学生阶段的更新,提高算法的局部搜索能力.最后,对OR-Library中的标准仿真实例进行实验,结果表明改进教学算法是有效的,其在收敛精度和鲁棒性能上均有较好的提高. To solve the job shop scheduling problem, an improved teaching-learning-based optimization algorithm(TLBO)is proposed in this paper. Aiming at the weak local search ability in the existing TLBO, it is proposed that the learner should learn knowledge not only from the better learners, but also from itself, therefore, a differential self-learning operator is designed. The learning ability of learner is evaluated by its optimal, and its learning times are adaptive calculated according to its learning ability. The learners with higher learning ability have more chance to self-learn. Finally, the proposed method is applied to solve the benchmark instances in OR-Library. The experimental results show that the proposed algorithm is effective while solving the job shop scheduling problem, and its accuracy and robustness can be improved further.
作者 张梅 吴凯华 胡跃明 ZHANG Mei WU Kai-hua HU Yue-ming(College of Automatic Science and Engineering Engineering Research Centre for Precision Electronic Manufacturing Equipments of Ministry, South China University of Technology, Guangzhou 510641, China)
出处 《控制与决策》 EI CSCD 北大核心 2017年第2期349-357,共9页 Control and Decision
基金 中央高校基本科研业务费专项资金项目(2015zz100) 广州市科技重大专项计划-产学研专项项目(2012Y5-00004)
关键词 教学优化算法 差异化学习 车间作业调度 teaching-learning-based optimization algorithm differential self-learning operator job shop scheduling problem
  • 相关文献

参考文献6

二级参考文献70

  • 1潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67
  • 2席裕庚,柴天佑,恽为民.遗传算法综述[J].控制理论与应用,1996,13(6):697-708. 被引量:347
  • 3王海英 王凤儒 柳崎峰.用定界遗传算法解有交货期的非标准Job-shop调度问题[A]..Proceedings of the 3th World Congress on Intelligent Control and Automation[C].China,2000.532-636.
  • 4Yahyaoui A, Fnaiech F. Recent trends in intelligent job shop scheduling. In: Proc. of the 2006 1st IEEE Int'l Conf. on E-Learning in Industrial Electronics. 2006. 191-195. http://ieeexplore.ieee,org/xpls/abs all.j sp?arnumber=4152793.
  • 5Watanabe M, Ida K, Gen M. A genetic algorithm with modified crossover operator and search area adaptation for the job-shop scheduling problem. Computers and Industrial Engineering, 2005,48(4):743-752. [doi: 10.1016/j.cie.2004.12.008].
  • 6Krishna K, Ganeshan K, Ram DJ. Distributed simulated annealing algorithms for job shop scheduling. IEEE Trans. on Systems, Man and Cybernetics, 1995,25(7): 1102-1109. [doi: 10.1109/21.391290].
  • 7Wan GH, Wan F, Job shop scheduling by taboo search with fuzzy reasoning. In: Proc. of the IEEE Int'l Conf. on Systems, Man and Cybernetics. Washington: IEEE, 2003. 1566-1570. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1244635&userTyp= inst.
  • 8Li JP, Uwe A. Explicit learning: An effort towards human scheduling algorithms. In: Proc. of the 1st Multidisciplinary lnt'l Conf. on Scheduling: Theory and Applications. 2003. 240-241. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=l 0.1.1.6.3123.
  • 9Chen X, Kong QS, Wu QD. Hybrid algorithm for job-shop scheduling problem. In: Proc. of the 4th World Congress on Intelligent Control and Automation. Shanghai: IEEE, 2002. 1739-1743. http://ieeexplofe:ieee.org/xpls/abs_all.jsp?arnumber=1021380.
  • 10Cantu-Paz E. Markov chain models of parallel genetic algorithms. IEEE Trans. on Evolutionary Computation, 2000,4(3):216-226. [doi: 10.1109/4235.873233].

共引文献161

同被引文献40

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部