摘要
针对飞机舵机电液加载系统存在的多余力干扰不易抑制的问题,提出了结合橡胶-金属缓冲弹簧、飞机舵机位移指令前馈、基于动态RBF神经网络在线辨识的单神经元PID输出负载力反馈的复合控制器结构功能及控制策略。利用蚁群聚类算法优化的动态RBF神经网络对系统进行在线辨识,获得Jacobian信息,由单神经元PID控制器完成控制参数的在线自整定。仿真结果表明,该方法可以在实验室条件下对于模拟飞机舵机所受到的力载荷实现快速、准确的加载,能保证系统的稳定性且具有较强的鲁棒性。
For the problem that is caused by surplus torque of aircraft rudder electro-hydraulic loading system is not easy to inhibit, compound controller structure function and control strategy were proposed that combined rubber-metal buffer spring, the displacement of steering gear and speed feed forward of aircraft rudder and the output force feedback use single neuron PID based on dynamic RBF neural network on-line identification. Ant clustering algorithm was used to optimize the dynamic RBF neural network to identify the object online to obtain Jacobian information, then use the single neuron PID controller complete control parameters online self-tuning control. The simulation results show that this method can achieve rapid and accurate load for simulated aircraft rudder power load under laboratory conditions, and can guarantee the stability of the system and has strong robustness.
作者
刘晓琳
王春婷
Liu Xiaolin Wang Chunting(College of Aeronautical Automation of Civil Aviation University of China, Tianjin 300300, Chin)
出处
《系统仿真学报》
CAS
CSCD
北大核心
2017年第2期409-417,共9页
Journal of System Simulation
基金
国家自然科学基金(U1333111)
中央高校基金(3122015C013)
关键词
飞机舵机电液加载系统
多余力
单神经元PID控制器
动态RBF神经网络
蚁群聚类算法
aircraft rudder electro-hydraulic loading system
surplus torque
single neuron PID controller
dynamic RBF neural network
ant clustering algorithm