摘要
基于实验法测定烟煤与不同生物质混烧灰熔点时存在工作量大、时效性差的问题,通过分析烟煤分别与玉米秸秆和木屑混烧灰的成分,并以灰成分为输入量,建立基于Elman神经网络的灰熔点预测模型。采用Levenberg-Marquardt反向传播算法训练模型,利用残差检验与后验差检验法检验模型预测性能。研究结果表明:玉米秸秆灰、木屑灰分别含有较高的K_2O和CaO,与烟煤灰相比,2种生物质灰的碱性氧化物(Na_2O,K_2O,CaO,MgO)质量分数较高,酸性氧化物(Al_2O_3和SiO_2)质量分数较低;检验结果验证了该模型具有较高的预测精度和较强的泛化能力。
Considering that experimental determination of ash fusion temperatures of bituminous coal and different blended biomass is often onerous and time-consuming, an Elman neural network-based model to forecast ash fusion temperatures was presented by analyzing the ash compositions of bituminous coal blended corn straw or sawdust with ash ingredients as inputs. The model was trained by adopting LM back-propagation algorithm and its forecasting performance was assessed by employing the method of residual and posterior error test. The results show that corn stalk ash and sawdust ash are rich in K2O and CaO, respectively. The two biomass ashes contain more alkaline oxides(Na2O,K2O,CaO,MgO), but less acidic oxides(Al2O3, SiO2) compared to bituminous coal ash. The test results validate that the model has high accuracy and strong generalization ability.
作者
蒋绍坚
付国富
黄靓云
唐远程
蔡攀
彭好义
JIANG Shaojian FU Guofu HUANG Liangyun TANG Yuancheng CAI Pan PENG Haoyi(School of Energy Science and Engineering, Central South University, Changsha 410083, China)
出处
《中南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2016年第12期4240-4247,共8页
Journal of Central South University:Science and Technology
基金
国家自然科学基金资助项目(21577176)
国家科技支撑计划项目(2015BAL04B02)~~
关键词
ELMAN神经网络
烟煤
生物质
灰熔点
预测模型
Elman neural network
bituminous coal
biomass
ash fusion temperature
forecasting model