摘要
空间曲线是微分几何的一个重要内容,因其抽象、知识点多,初学者往往感到难以掌握,不容易把各知识点融会贯通,对题目无处下手。根据不同的数学思想方法,从向量函数的性质、挠率公式、伏雷内公式、平面方程四种不同角度对微分几何的一个实例进行了剖析,较全面地介绍了空间曲线的相关知识点和相关思想方法的应用。
Abstuact: Curve in 3-space is an important content in differential geometry.h refers many knowledges, so the students who just begin study it usually feel hard to handle them. It is not easy to solve questions with the knowledges. A problem of curve in 3-space is solved in the article with vector function ,tortsion formulas, Frenet Formulas and plane equation according to different mathematical thoughts and methods.It uses most of knowledges of curve in 3-space and means of mathematics. Key words: Vector Function; Frenet Formulas; Curvature; Torsion
作者
刘涛
LIU Tao(School of Science,Guizhou University of Engineering Science, Bijie, Guizhou551700, China)
出处
《贵州工程应用技术学院学报》
2016年第6期119-124,共6页
Journal of Guizhou University Of Engineering Science
基金
贵州省科学技术基金项目"基于格值逻辑的自动推理方法研究"
项目编号:黔科合J字LKB[2012]02号
关键词
向量函数
伏雷内公式
曲率
挠率
Vector Function
Frenet Formulas
Curvature
Torsion