摘要
为研究橡胶轮胎挤出部件外形尺寸的非接触在线测量方法,引入机器视觉技术。首先对CCD采集的图像数据进行滤波降噪,利用改进的Canny边缘检测算法进行图像边缘粗定位,并在单像素边缘的基础上采用多项式插值方法对目标边缘进行精确的亚像素细分,最后对边缘数据进行拟合,结合系统标定值,计算出挤出部件的外形尺寸。将此方法应用到橡胶轮胎挤出部件外形尺寸的检测中,结果表明:该方法具有良好的实时性、精确性,能够满足连续生产挤出部件外形尺寸工业检测的要求。
In order to study the non-contact on-line measuring method of the rubber tire extrudering external dimensions,machine vision technology was introduced.Firstly,the image data acquired by the CCD is filtered.Then,the edge of the image is refined by the improved Canny edge detection algorithm,and the sub-pixel is subdivided by the polynomial interpolation method on the basis of the single pixel edge.Finally,the least square method is used to fit the edge data,and the external dimension of the extruded part is calculated according to the system calibration value.This method is applied to the measurement of the outer dimensions of the rubber tire extrusion parts.The results show that the method has good real-time performance and accuracy,and can meet the requirements of industrial inspection for continuous production of extruded parts.
出处
《桂林理工大学学报》
CAS
北大核心
2016年第4期838-843,共6页
Journal of Guilin University of Technology
基金
广西"漓江学者"专项经费项目
广西科学研究与技术开发计划项目(桂科攻1412206-14)
桂林电子科技大学研究生教育创新计划项目(YJCXS201510)
关键词
机器视觉
挤出部件
边缘检测
亚像素
machine vision
extrusion parts
edge detection
sub-pixel