摘要
考虑一个非均质三维Navier-Stokes方程模型,借助能量方法、Littlewood-Paley仿积分解技巧和Sobolev嵌入定理研究解的整体正则性.用-D2u近似替代经典非均质Navier-Stokes方程中的耗散项Δu,得到一个新的NavierStokes方程模型,其中D是一个傅里叶乘子,其特征是m(ξ)=|ξ|5/4,对于任意小的正常数ε和δ,当初值(ρ0,u0)∈H3/2+ε×Hδ时,证明了该模型解的爆破准则和整体正则性.
A model of inhomogeneous three-dimensional Navier-Stokes equations was studied in this paper. By using the energy method,Littlewood-Paley paraproduct decomposition techniques and Sobolev embedding theorem study of the global regularity of solutions were adopted. The dissipative term Δu in the classical inhomogeneous Navier-Stokes equations is replaced by- D^2 u and a new Navier-Stokes equations model was obtained,where D was a Fourier multiplier whose symbol is m( ξ) = | ξ |^5 /4. Blowup criterion and global regularity of this model were proved for the initial data( ρ0,u0) ∈H^3 /2 + ε× H^δ,where ε and δ are arbitrary small positive constants.
出处
《北京工业大学学报》
CAS
CSCD
北大核心
2017年第2期320-326,共7页
Journal of Beijing University of Technology
基金
国家自然科学基金资助项目(11371042)
北京市自然科学基金资助项目(1132006)