摘要
本文运用四次Diophantine方程的性质以及初等方法证明了:丢番图方程y^2=nx(x+1)(2x+1)至多有2^(w(n))-1个正整数解.当n=p^k时,方程的正整数解为(p,k,x,y)=(5,1,4,30),(29,1,4900,2612610).当n≡2p,p.5,7(mod8)时,方程的正整数解为(p,x,y)=(3,24,420).
In this paper, the properties of the four Diophantine equation and the elementary method are proved: the throw of the equation y 2 = nx (x+ 1) (2x + 1) has at most 2w(n) - 1 pos itive integer solution. When n = pk , the positive integer solut ion of the equation is i(p , k , x , y ) - ( 5 , 1 ,4 , 30 ) , (29 ,1 ,4 900 , 2612610) . When n - 2p , the pos itive integer solut ion of the equation is (p , x ,y ) . ( 3 ,24 ,420 ) .
出处
《岭南师范学院学报》
2016年第6期4-7,共4页
Journal of Lingnan Normal University
基金
海南省教育科学规划专项课题(QJH1251533)
海南省高考综合改革重点课题