期刊文献+

凹壁不稳定性流动的数值计算

Numerical Calculation of Flow Instability of Concave Wall
下载PDF
导出
摘要 凹壁结构在工业应用的多个领域中都是很常见的,由于离心力不稳定性,流体流过凹壁面附近时可能会产生G?rtler涡。为了研究这些涡的特性及对流场产生的影响,采用CFD技术对曲率半径为2 m的弯曲渠道的流动过程进行数值模拟。用有限体积法对模型进行空间离散,采用大涡模拟中Smagorinsky-Lilly模型进行计算。通过与实验结果进行对比发现,计算结果能较准确的反应G?rtler涡随流动的发展过程。在此基础上进行的分析表明:在速度3 m/s,湍流度0.35%的进口条件下,沿流向流过一段距离后,在靠近凹壁的边界层中产生了G?rtler涡;涡轴平行于流动方向并且相邻涡轴之间的距离保持不变;随着涡在展向和法向空间的增长,速度等值线出现"蘑菇状"结构;靠近出口位置"蘑菇状"结构破裂,流动发生转捩。 Concave wall structures are very common in industrial application fields,Gortler vortices may generate in the concave wall boundary layer due to the centrifugal instability. In order to study the characteristics of Gortler vortices and impact on flow field,numerical simulations are made on the bending rectangular channel which radius is 2 m. Finite volume method was employed during the spatial discretization and the calculation was carried out in term of Smagorinsky-Lilly model of large eddy simulation( LES). Results show that,on the inlet conditions of 3 m / s in speed,turbulence 0. 35%,G?rtler vortices generate in the concave wall boundary layer along streamwise. Vortex axis is parallel to the flow direction and the distance between adjacent Vortex axis remains the same. With the development of eddy in normal and spanwise space,the speed contour lines appear " mushroomshaped" structure. Near the position of exit, " mushroom-shaped" structure breaks down and flow transitions.
出处 《科学技术与工程》 北大核心 2017年第1期305-310,共6页 Science Technology and Engineering
关键词 Gortler涡 大涡模拟 速度等值线 速度型曲线 转捩 Gortler vortices large eddy simulation speed contours velocity profile transition
  • 相关文献

参考文献1

二级参考文献20

  • 1[1]KOLMOGOROV A.N.The local structure of turbulence in incompressible viscous fluid for very large Reynolds number,Dokl.Akad.Nauk SSSR 1941,30:9-13,(Reprinted in Proc.Royal Soc.Lond.A,1991,434:9-13,).
  • 2[2]DEARDOFF J.W.The use of subgrid transport equation in a three dimensional model of atmospheric turbulence [ J] ASME J .Fluid Engineering 1973,95:429.
  • 3[3]FATICA M.et al.Validation of large-eddy simulation in a plain asymmetrical diffuser[ R].Annual Brief,Center for Turbulence Research 1997:22.
  • 4[4]KRAVCHENKO A G,MOIN P.Numerical studies of flow over a circular cylinder at Reo = 3900 [J].Physics of Fluids,200012:403.
  • 5[5]VASILYEV O V et al.General class of commutative filters for LES in complex geometry [J].J Computational Physics 1998,146:82.
  • 6[6]SMAGORINSKY J.General circulation experiments with primitive equation [ R].Monthly Weather Review 1963,91-99.
  • 7[7]BARDINA J et al.Improved subgrid model for large-eddy simulation [ R] AIAA paper 1980,80-1357.
  • 8[8]MENEVEAU C,KATZ J.Scale-invariance and turbulence models for Large-Eddy-Simulation [ R ].Annual Review of Fluid Mechanics 2000,32:1.
  • 9[9]GERMANO M et al.A dynamic subgrid-scale eddy viscosity model [J].Physics of Fluid 1991,A3:1760.
  • 10[10]LEISIEUR M.Turbulence in fluids [M].Kluwer Academic Publishers,1997.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部