期刊文献+

基于EEMD和自相关函数峰态系数的轴承故障诊断方法 被引量:30

Fault diagnosis method for rolling bearings based on EEMD and autocorrelation function kurtosis
下载PDF
导出
摘要 针对滚动轴承故障冲击信号周期性强且易被强烈的背景噪声所淹没的特点,提出了基于EEMD和自相关函数峰态系数的轴承故障诊断方法。首先,对采集到的复杂振动信号进行EEMD分解,根据自相关函数峰态系数和峭度准则重构IMF分量以突出故障特征信息;然后,利用谱峭度自动确定带通滤波器的最佳中心频率和带宽;最后,将滤波后的信号进行包络解调分析并与理论故障特征频率对比。通过轴承故障的仿真和实验研究,验证了该方法的有效性和可行性。 Considering that fault shock signals of rolling bearings have the features of periodicity and easily immerging in background noise, a fault diagnosis method based on the EEMD and autocorrelation function kurtosis was proposed. Bearing fault signal was decomposed by EEMD method, and according to the autocorrelation function kurtosis and the kurtosis criterion, the IMF components, which contain much more fault information, were chosen to reconstruct a new composite signal. By virtue of the spectral kurtosis analysis of the new composite signal, a band-pass filter was designed. The new composite signal was filtered by the band-pass filter, further envelope demodulated and then compared with the theoretical failure frequency. A case study on bearing faults simulations and experiments verifies the effectiveness and feasibility of the method proposed. © 2017, Editorial Office of Journal of Vibration and Shock. All right reserved.
出处 《振动与冲击》 EI CSCD 北大核心 2017年第2期111-116,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(11227201 11472179 U1534204 11572206 11302137 11172182 11372199) 河北省自然科学基金(A2015210005) 河北省教育厅项目(YQ2014028) 河北省人才工程培养经费资助科研项目(A2016002036)
关键词 自相关函数 峰态系数 轴承 故障诊断 Autocorrelation Bandpass filters Bearings (machine parts) Bearings (structural) Failure analysis Higher order statistics Roller bearings Signal processing Speed control
  • 相关文献

参考文献7

二级参考文献57

  • 1田光明,陈光(衤禹).基于能量峰区域时频滤波的信号估计[J].信号处理,2004,20(3):263-267. 被引量:3
  • 2石林锁.滚动轴承故障检测的改进包络分析法[J].轴承,2006(2):36-39. 被引量:17
  • 3胡红英,马孝江.基于局域波分解的信号降噪算法[J].农业机械学报,2006,37(1):118-120. 被引量:26
  • 4宋立新,王祁,王玉静,梁堃.具有间断事件检测和分离的经验模态分解方法[J].哈尔滨工程大学学报,2007,28(2):178-182. 被引量:11
  • 5梅宏斌.滚动轴承振动监测与诊断--理论·方法·系统[M].北京:机械工业出版社,1996.
  • 6Ho D, Randall R B. Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals [ J ]. Mechanical Systems and Signal Processing, 2000, 14 (5) : 763 - 788.
  • 7Nikolaou N G, Antoniadis I A. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted Morlet wavelet [J]. Mechanical Systems and Signal Processing, 2002,16 (4) : 677 - 694.
  • 8Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis [J]. Proc. R. Soc, 1998,454:903 - 905.
  • 9Dwyer R F. Detection of non-Gaussian signals by frequency domain kurtosis estimation[ C ]. International Conference On Acoustics, Speech, and Signal Processing, Boston, 1983, 607 - 610.
  • 10Antoni J. The spectral kurtosis: A useful tool for characterising non-stationary signals [J]. Mechanical Systems and Signal Processing, 2006,20:282 - 307.

共引文献437

同被引文献244

引证文献30

二级引证文献247

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部