期刊文献+

tsk-shell:一种话题敏感的高影响力传播者发现算法 被引量:2

tsk-shell:An Algorithm for Finding Topic-Sensitive Influential Spreaders
下载PDF
导出
摘要 在社交网络中,挖掘高影响力的信息传播者,对微博服务中内容的流行度分析和预测是非常有价值的任务.与众多相关方法相比,k-shell分解(k-core)方法因其简洁高效、平均性能好的特点吸引了越来越多的研究人员的兴趣.但是,目前k-shell方法着重考虑节点在网络中的位置因素,而忽略了话题在信息传播中的影响.因此,为了利用用户历史数据中蕴含的话题对消息的传播概率进行细粒度的建模,提出了一种话题敏感的k-shell(topic-sensitive k-shell,tsk-shell)分解算法.在真实Twitter数据集上实验表明,在发现top k高影响力传播者任务中,tsk-shell比k-shell的性能平均提高了约40%,证明了tsk-shell算法的有效性. Discovering influential spreaders is a valuable task in social networks,especially for the popularity prediction and analysis of online contents on microblogs,such as Twitter and Weibo.The k-shell decomposition(k-core),which identifies influential spreaders located in the core of a network,attracts more attention due to its simpleness and effectiveness compared with various related methods,such as indegree,betweenness centrality and PageRank.However,k-shell method only considers the factor of the network position of nodes and ignores the impacts of the content itself in information diffusion.The content itself plays an important role in the process of diffusion.For example,ones just retweet their interested tweets in microblogs.The spread ability of users depends not only on topology structures but also on the published contents,and therefore a unified model considering the two aspects simultaneously is proposed to model users'influence.Specifically,the topics hidden in user generated contents(UGC)are exploited to model the users'propagation probability and a topicsensitive k-shell(tsk-shell)decomposition algorithm is proposed.Experimental studies on a real Twitter dataset show that the tsk-shell outperforms traditional k-shell by 40% on average in the task of finding top kinfluential users,which proves the effectiveness of the tsk-shell algorithm.
出处 《计算机研究与发展》 EI CSCD 北大核心 2017年第2期361-368,共8页 Journal of Computer Research and Development
基金 国家"九七三"重点基础研究发展计划基金项目(2012CB316303 2014CB340401) 国家"八六三"高技术研究发展计划基金项目(2015AA015803 2014AA015204) 中国科学院重点部署项目(KGZD-EW-T03-2) 国家自然科学基金项目(61232010 61572473 61303156 61502447) 国家242信息安全计划基金项目(2015F028) 山东省自主创新及成果转化专项(2014CGZH1103) 欧盟第七科技框架计划项目(FP7)(PIRSES-GA-2012-318939)~~
关键词 高影响力传播者 k-shell分解 社交网络 信息扩散 传播概率 微博 influential spreader k-shell decomposition social network information diffusion propagation probability microblogs
  • 相关文献

参考文献2

二级参考文献48

  • 1中国互联网络信息中心.中围互联网络发展状况统计报告[EB/OL].[2012-07-16].http:/www.cnnic.cn/dtyggldtgg/201201/W020120116337628870651.pdf.
  • 2Rogers E M. Diffusion of Innovations [M]. New York: The Free Press, 1962.
  • 3Weng J, Lira E P, Jiang J, et al. TwitterRank: Finding topic sensitive influential twitters [C]//Proc of the 3rd ACM Int Conf on Web Search and Data Mining. New York:ACM, 2010: 261-270.
  • 4Pal A, Counts S. Identifying topical authorities in microblogs [C] //Proc of the 4th ACM Int Conf on Web Search and Data Mining. New York: ACM, 2011:45-54.
  • 5Gladwell M. The Tipping Point: How Little Things Can Make a Big Difference[M]. New York: Little Brown, 2000.
  • 6Berry J, Keller E. The Influentials: One American in Ten "Fells the Other Nine How to Vote, Where to Eat, and What to Buy[M]. New York: The Free Press, 2003.
  • 7Katz E, Lazarsfeld P. Personal Influence: The Part Played by People in the Flow of Mass Communications [M]. New York: The Free Press, 1955.
  • 8Frank M B. A new product growth for model consumer durables[J]. Management Science, 1969, 15(5): 215-227.
  • 9Young H P. The diffusion of innovations in social networks [EB/OL]. (2000 05 31) [2012-07- 16]. http://economics. ouls. ox. ae. uk/1996/1/diffusion, pdf.
  • 10Kempe D, Kleinberg J, Tardos I: Maximizing the spread of influence through a social network [C]//Proc of the 9th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2003: 137-146.

共引文献137

同被引文献11

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部