摘要
Isoamylene from the Fischer-Tropsch syncrude can be transformed to valuable fuel oxygenate additives through an equilibrium limited etherification reaction with methanol. A reactive distillation process is established to increase isoamylene conversion. Facing the challenge of improving product purity at the same time, an equilibrium stage model based design methodology is proposed and illustrated step-by-step for converting the Fischer-Tropsch C_5 olefins to tert-amyl methyl ether(TAME) process by using Aspen Plus. Under the guide of the proposed methodology, the design leads to a TAME product purity of higher than 95% and an isoamylene conversion of higher than 90%. The etherification kinetics over Amberlyst 35 is also studied within a temperature range of 60 ℃ to 75 ℃ to shed more light on the feasibility of process development. The methodology provides an effective reactive distillation column design to achieve the target reactant conversion and product purity simultaneously.
Isoamylene from the Fischer-Tropsch syncrude can be transformed to valuable fuel oxygenate additives through an equilibrium limited etherification reaction with methanol. A reactive distillation process is established to increase isoamylene conversion. Facing the challenge of improving product purity at the same time, an equilibrium stage model based design methodology is proposed and illustrated step-by-step for converting the Fischer-Tropsch C_5 olefins to tert-amyl methyl ether(TAME) process by using Aspen Plus. Under the guide of the proposed methodology, the design leads to a TAME product purity of higher than 95% and an isoamylene conversion of higher than 90%. The etherification kinetics over Amberlyst 35 is also studied within a temperature range of 60 ℃ to 75 ℃ to shed more light on the feasibility of process development. The methodology provides an effective reactive distillation column design to achieve the target reactant conversion and product purity simultaneously.
基金
financial support from the National High Technology Research and Development Program 863(2011AA05A204)
National Natural Science Foundation of China(U1361202)